Evolución de metabolitos primarios y pigmentos fotosintéticos durante la ontogenia de cotiledones de quinoa (Chenopodium quinoa Willd.) sometidos a estrés salino

Autores/as

  • Ana C. Ruffino Cátedra de Fisiología Vegetal. Facultad de Ciencias Naturales e IML
  • Mariana Rosa Cátedra de Fisiología Vegetal. Facultad de Ciencias Naturales e IML
  • Mirna Hilal Cátedra de Fisiología Vegetal. Facultad de Ciencias Naturales e IML
  • Juan A. González Instituto de Ecología, Área Botánica. Fundación Miguel Lillo
  • Fernando Prado Cátedra de Fisiología Vegetal. Facultad de Ciencias Naturales e IML

Palabras clave:

Cotiledones, metabolitos, ontogenia, quinoa, salinidad

Resumen

Ruffino, Ana M. C.; Mariana Rosa; Mirna Hilal; Juan A. González y Fernando E. Prado. 2008. “Evolución de metabolitos primarios y pigmentos fotosintéticos durante la ontogenia de cotiledones de quinoa (Chenopodium quinoa Willd.) sometidos a estrés salino”. Lilloa 45 (1-2). Se estudió la variación en el desarrollo (PF y PS) y en el contenido de pigmentos fotosintéticos (clorofila y carotenoides), carbohidratos solubles (sacarosa, glucosa y fructosa), lípidos (fosfolípidos, glicolípidos y esteroles), proteínas solubles y prolina durante el ciclo ontogénico de cotiledones de quinoa (Chenopodium quinoa Willd.) sometidos a salinidad. Los resultados obtenidos mostraron que la presencia de sal (230 mM) afecta tanto la distribución como el contenido de la mayoría de los compuestos analizados. Los niveles de pigmentos fotosintéticos, lípidos y proteínas solubles resultaron significativamente inferiores en los cotiledones estresados; mientras que, los carbohidratos solubles (glucosa y sacarosa) mostraron contenidos más altos. La prolina libre, por su parte, prácticamente no exhibió cambios de significación entre los cotiledones control y estresados hasta el 12avo día de desarrollo, para luego mostrar un fuerte incremento, superior al 600%, en los cotiledones control, y en mucha menor proporción (+170%) en los estresados. La relación fosfolípidos/ glicolípidos si bien, no mostró variaciones de significación a lo largo de todo el ciclo para cada tratamiento, los valores resultaron inferiores en los cotiledones estresados. En función de los resultados alcanzados se discute el efecto del estrés salino sobre la ontogenia cotiledonar.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Adam, P. 1990. Saltmarsh Ecology. Cambridge University Press, New York.

Ames, B. N. 1966. Assay of inorganic phosphate, total phosphate and phosphatases. Methods in Enzymology 8: 115-118.

Ben Rais, L., M. J. Alpha, J. Bahl, T. GuillotSalomón & J. P. Dubacq. 1993. Lipid and protein contents of jojoba leaves in relation to salt adaptation. Plant Physyology and Biochemistry 31: 547-557.

Bewley, J. D. & M. Black. 1994. Seeds: Physiology of Development and Germination. 2nd edn. Plenum Press, New York.

Blits, K. C. & J. L. Gallagher. 1990. Effect of NaCl on lipid content of plasma membranes isolated from roots and cell suspension cultures of dicot halophyte Kosteletzkya virginica (L.) Presl. Plant Cell Reports 9: 156-159.

Bohnert, H. J., D. E. Nelson & R. G. Jensen. 1995. Adaptations to environmental stresses. The Plant Cell 7: 1099-1111.

Bolarín, M. C., A. Santa-Cruz, E. Cayuela & F. Pérez-Alfocea. 1995. Short-term solute changes in leaves and roots of cultivated and wild tomato seedlings under salinity. Journal of Plant Physiology 147: 463-468.

Briens, M. & F. Larher. 1982. Osmoregulation in halophytic higher plants: a comparative study of soluble carbohydrates, polyols, betaines and free proline. Plant Cell and Environment 5: 287-292.

Buchanan-Wollaston, H. W. 1997. The molecular biology of leaf senescence. Journal of Experimental Botany 48: 181-199.

Burnouf-Radosevich, M. 1988. Quinoa (Chenopodium quinoa Willd.): A potential new crop. En: Bajaj, Y. P. S. (ed.), Biotechnology in Agriculture and Forestry, vol. 6 Crops II. Springer-Verlag, Berlin, pp.386-404.

Casano, L. M., L. D. Gómez, H. R. Lascano, C. A. González & V. S. Trippi. 1997. Inactivation and degradation of

CuZn-SOD by active oxygen species in wheat chloroplasts exposed to photooxidative stress. Plant and Cell Physiology 38: 433-440.

Cardini, C. E., L. F. Leloir & J. Chiriboga. 1955. The biosynthesis of sucrose. Journal of Biological Chemistry 214: 149-155.

Chapelle, E. W. & M. S. Kim. 1992. Ratio analysis of reflectance spectra (RARS): an algorithm for the remote estimation of the concentration of chlorophyll a, chlorophyll b, and carotenoids in soybean leaves. Remote Sensing of Environment 39: 239-247.

Dangl, J. L., R. A. Dietrich & H. Thomas. 2000. Senescence and programmed cell death. En: Buchanan, B. B., W.

Gruissem & R. L. Jones (eds.), Biochemistry & Molecular Biology of Plants. American Society of Plant Physiologists, Maryland, pp. 1044-1100.

del Río, L. A., G. M. Pastori, J. M. Palma, L. M. Sandalio, F. Sevilla, F. J. Corpas, A. Jiménez, E. López Huertas & J. A.

Hernández. 1998. The activated oxygen role of peroxisomes in senescence. Plant Physiology 116: 1195-1200.

Dubois, M., K. A. Gilles, J. K. Hamilton, P. A. Rebers & F. Smith. 1956. Colorimetric method for determination of sugars and related substances. Analytical Chemistry 28: 350-356.

Elstner, E. F. 1982. Oxygen activation and oxygen toxicity. Annual Review of Plant Physiology 33: 73-96.

Flowers, T. J., P. F. Troke & A. R. Yeo. 1977. The mechanism of salt tolerance in halophytes. Annual Review of Plant

Physiology 28: 89-121.

Foyer, C. H., M. Lelandais & K. J. Kuner t. 1994. Photo-oxidative stress in plants. Physiologia Plantarum 92: 696-717.

Gandarillas, H. 1983. Genética y origen. En: La quinoa y la kañiwa. Cultivos andinos. CIID (Centro Int. de Invest. para el desarrollo) IICA (Inst. Inteamericano de Cs. Agrícolas). Serie Libros y Materiales Educativos N° 40 Cap. 3: 45-64.

Gorham, J., L. Y. Hughes & R. G. Wyn Jones. 1981. Low-molecular-weight carbohydrates in some salt-stressed plants. Physiologia Plantarum 53: 27-33.

Hendry, G. A. F. & A. H. Price. 1993. Stress indicators: chlorophylls and carotenoids. En: Hendry, G. A. F. & J. P.

Grime (eds.), Methods in Comparative Plant Ecology. Chapman & Hall, London, pp. 148-152.

Hernández, J. A., E. Olmos, F. J. Corpas, F. Sevilla & L. A. del Río. 1995. Salt-induced oxidative stress in chloroplast of pea plants. Plant Science 105: 151-167.

Hirayama, O. & M. Mihara. 1987. Characterization of membrane lipids of higher plants differing in salt-tolerance. Agricultural and Biological Chemistry 12: 3215-3221.

Jacobsen, S. E. 1993. Quinoa Chenopodium quinoa Willd. A novel crop for European agriculture. Tesis Doctoral. The Royal Veterinary and Agricultural University, Denmark. 142 pp.

Jacobsen, S. E., I. Jørgensen & O. Stølen. 1994. Cultivation of quinoa (Chenopodium quinoa) under temperate climatic conditions in Denmark. Journal of Agricultural Science 122: 47-52.

Jorgensen, O. S. & B. Andersen. 1973. An improved glucose-oxidase-peroxidasecoupled assay for b-fructofuranosidase activity. Analytical Biochemistry 53: 141-145.

Kruger, N. J. 1990. Carbohydrate synthesis and degradation. En: Dennis, D. T. & D. H. Turpin (eds.), Plant Physiology, Biochemistry and Molecular Biology. Longman Scientific and Technical, England, pp. 59-76.

Lowry, O. H., N. H. Rosebrough, A. L. Farr & R. J. Randall. 1951. Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry 193: 265-275.

Lynch, M. J., S. S. Raphael, L. D. Meldon, P. D. Space, P. Hillis & M. J. H. Inwood. 1963. Medical Laboratory Technology. Saunders WB, London.

Marschner, H. A., A. Kylin & P. J. C. Kuiper. 1981. Differences in salt tolerance of three sugar beet genotypes. Physiologia Plantarum 51: 234-238.

Munns, R. 1993. Physiological process limiting plant growth in saline soils: some dogmas and hypothesis. Plant Cell and Environment 16: 15-24.

Nooden, L. D. 1988. The phenomenon of senescence and aging. Whole plant senescence. En: Nooden, L. D. & A. C. Leopold (eds.), Senescence and Aging in Plants. Academic Press, San Diego, pp. 1-50.

Patakas, A. & B. Noitsakis. 2000. Leaf age effects on solute accumulation in waterstressed grapevines. Journal of Plant Physiology 158: 63-69.

Pennell, R. I. & C. Lamb. 1997. Programmed cell death in plants. The Plant Cell 9: 1157-1168.

Pérez-Alfocea, F. & F. Larher. 1995. Effects of phlorizin and p-chloromercuribenzenesulfonic acid on sucrose and proline accumulation in detached tomato leaves submitted to NaCl and osmotic stresses. Journal of Plant Physiology 145: 367-373.

Pfeif fer, I. & U. Kutschera. 1996. Sucrose metabolism and lipid mobilization during light-induced expansion of sunflower cotyledons. Journal of Plant Physiology. 147: 553-558.

Prado, F. E., J. A. González, M. Gallardo, M. Moris, C. Boero & A. Kortsarz. 1995. Changes in soluble carbohydrates

and invertase activity in Chenopodium quinoa (“quinoa”) developed for saline stress during germination. Current Topics in Phytochemistry 14: 1-5.

Prado, F. E., C. Boero, M. Gallardo & J. A. González. 2000. Effect of NaCl on germination, growth, and soluble sugar content in Chenopodium quinoa Willd. seeds. Botanical Bulletin of Academia Sinica 41: 27-34.

Price, A. H., N. M. Ather thon & G. A. F. Hendry. 1989. Plants under droughtstress generate activated oxygen. Free

Radical Research Communications 8: 61-66.

Ramagopal, S. 1988. Regulation of protein synthesis in root, shoot and embryonic tissues of germinating barley during salinity stress. Plant Cell and Environment 11: 501-515.

Reimann, C. & S. W. Breckle. 1993. Sodium relations in Chenopodiaceae: a comparative approach. Plant Cell and

Environment 16: 323-328.

Risi, C. & N. W. Galwey. 1984. The Chenopodium grains in the Andes: Inca crops for modern agriculture. Advances in Applied Biology 10: 145-216.

Roe, J. H. & N. M. Papadopoulos. 1954. The determination of fructose-6-phosphate and fructose-1,6-diphosphate. Journal of Biological Chemistry 210: 703-707.

Roughan, P. G. & R. D. Batt. 1967. Quantitative analysis of sulpholipid (sulphoquinovosyl diglyceride) and galactolipids (monogalactosyl and digalactosyl diglycerides) in plant tissues. Analytical Biochemistry 22: 74-88.

Ruffino, A. M. C. 2002. Evolución de metabolitos y pigmentos durante la ontogenia de cotiledones de quinoa (Chenopodium quinoa Willd.) sometidos a estrés salino. Tesis de Licenciatura. Facultad de Ciencias Naturales e IML, Argentina. 48 pp.

Seemann, J. R. & C. Critchley. 1985. Effect of salt stress on the growth, ion content, stomatal behaviour and photosynthetic capacity of a salt-sensitive species, Phaseolus vulgaris L. Planta 164: 151-162.

Ting, S. V. & R. L. Roussef. 1979. Proline content in Florida frozen concentrated orange juice and canned grapefruit juice. Proceedings of the Florida State Horticultural Society 92: 143-145.

Turner, L. B. 1990. The extend and pattern of osmotic adjusterment in white clover Trifolium repens L. during the development of water stress. Annals of Botany 66: 721-727.

Ungar, I. A. 1991. Ecophysiology of Vascular Halophytes, CRC Press, Boca Raton.

Ungar, I. A. 1996. Effect of salinity on seed germination, growth and ion accumulation of Atriplex patula (Chenopodiaceae). American Journal of Botany 83: 604-607.

Wang, Z. & G. W. Stutt. 1996. The role of carbohydrates in active osmotic adjustement in apple under water stress. Journal of American Society for Horticultural Science 177: 816-823.

Wellburn, A. R. 1994. The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. Journal of Plant Physiology 144: 307-313.

Yahya, A., C. Liljenberg, R. Nilsson, S. Lindberg & A. Banas. 1995. Effects of pH and mineral nutrition supply on lipid composition and protein pattern of plasma membranes from sugar beet roots. Journal of Plant Physiology 146: 81-87.

Yeo, A. 1998. Molecular Biology of salt tolerance in the context of whole-plant physiology. Journal of experimental Botany 323: 915-929.

Zenoff, A. M., M. Hilal, M. Galo & H. Moreno. 1994. Changes in roots lipid composition and inhibition of the extrusion of protons during salt stress in two genotypes of soybean resistant or susceptible to stress. Varietal differences. Plant and Cell Physiology 35: 729-735.

Zhu, J. K., P. M. Hasegawa & R. A. Bressan. 1997. Molecular aspects of osmotic stress in plants. Critical Reviews in Plant Sciences 16: 253-277.

Descargas

Publicado

2008-12-07

Cómo citar

Ruffino, A. C., Rosa, M., Hilal, M., González, J. A., & Prado, F. (2008). Evolución de metabolitos primarios y pigmentos fotosintéticos durante la ontogenia de cotiledones de quinoa (Chenopodium quinoa Willd.) sometidos a estrés salino. Lilloa, 45(1-2), 108–118. Recuperado a partir de https://www.lillo.org.ar/journals/index.php/lilloa/article/view/468
صندلی اداری سرور مجازی ایران Decentralized Exchange

Número

Sección

Artículos originales

Artículos más leídos del mismo autor/a

فروشگاه اینترنتی صندلی اداری جوراب افزایش قد ژل افزایش قد خرید vpn خرید vpn سرور مجازی بایننس