Botánica aplicada: radiación UV-B para la obtención de brotes de quinua enriquecidos en compuestos fenólicos, con probables usos en protectores solares naturales o como alimentos funcionales

Autores/as

DOI:

https://doi.org/10.30550/j.lil/1957

Palabras clave:

Fenólicos, microcultivo, pantalla solar, quinoa, UV-B

Resumen

El objetivo fue evaluar el uso de un sistema de microgreen y dosis muy cortas de radiación UV-B para la obtención de biomasa vegetal como fuente de extractos enriquecidos en compuestos fenólicos con probables usos cosméticos y/o alimentarios. Se utilizaron plántulas de quinua, especie nativa de los Andes, de dos edades diferentes. Las plántulas fueron irradiadas con diferentes dosis de UV-B y luego evaluadas cuantificando indicadores de daño oxidativo. Además, se determinó contenido de compuestos fenólicos, pigmentos fotosintéticos, capacidad antioxidante y factor de protección solar. Los resultados mostraron que las plántulas más jóvenes respondieron mejor a dosis cortas de UVB, aumentando el contenido de fenoles solubles e insolubles, sin presentar daño oxidativo. Estos resultados se correlacionaron con el mayor poder antioxidante de los extractos y un factor de protección solar intermedio. Concluimos que esta especie, cultivada en un sistema de microgreen, es una alternativa prometedora para la obtención de extractos enriquecidos en compuestos fenólicos con posible uso en formulaciones de protectores solares naturales. En este sentido, estos resultados pueden servir como punto de partida para estudios de optimización mediante la metodología de superficie-respuesta.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Ain, Q. T., Siddique, K., Bawazeer, S., Ali, I., Mazhar, M., Rasool, R. & Jafar, T. H. (2023). Adaptive mechanisms in quinoa for coping in stressful environments: an update. PeerJ. 11: e14832. http://doi.org/10.7717/peerj.14832

Al-Qabba, M. M., El-Mowafy, M. A., Althwab, S. A., Alfheeaid, H. A., Aljutaily, T. & Barakat, H. (2020). Phenolic profile, antioxidant activity, & ameliorating efficacy of Chenopodium quinoa sprouts against CCl4-induced oxidative stress in rats. Nutrients 12: 2904. https://doi.org/10.3390/nu12102904

Álvarez-Gómez, F., Korbee, N., Casas-Arrojo, V., Abdala-Díaz, R. T. & Figueroa, F. L. (2019). UV photoprotection, cytotoxicity and immunology capacity of red algae extracts. Molecules 24: 341. http://doi.org/10.3390/molecules24020341

Assabgui, R. A., Reid, L. M., Hamilton, R. I. & Arnason, J. T. (1993). Correlation of kernel (E)- ferulic acid content of maize with resistance to Fusarium graminearum. Phytopathology 83: 949-953.

Birt, D. F., Mitchell, D., Gold, B., Pour, P. & Pinch, H. C. (1997). Inhibition of ultraviolet light induced skin carcinogenesis in SKH-1 mice by apigenin, a plant flavonoid. Anticancer Research 17: 85-91.

Borghetti, G. S. & Knorst, M. T. (2006). Development and evaluation of physical stability from O/W lotions containing sunscreens. Revista Brasileira de Ciências Farmacêuticas 42: 531-537. https://doi.org/10.1590/S1516-93322006000400008

Brenner, M. & Hearing, V. J. (2008). The Protective Role of Melanin Against UV Damage in Human Skin. Photochemistry and Photobiology 84: 539-549. https://doi.org/10.1111/j.1751-1097.2007.00226.x

Chappelle, E. W., Kim, M. S. & McMurtrey III, J. E. (1992). Ratio analysis of reflectance spectra (RARS): an algorithm for the remote estimation of the concentrations of chlorophyll a, chlorophyll b, and carotenoids in soybean leaves. Remote sensing of environment 39: 239-247.

Chen, Z., Gao, W., Reddy, K. R., Chen, M., Taduri, S., Meyers, S. L. & Shankle, M. W. (2020). Ultraviolet (UV) B effects on growth and yield of three contrasting sweet potato cultivars. Photosynthetica 58: 37-44. https://doi.org/10.32615/ps.2019.137

Chen, Z., Ma, Y., Weng, Y., Yang, R., Gu, Z. & Wang, P. (2019). Effects of UV-B radiation on phenolic accumulation, antioxidant activity and physiological changes in wheat (Triticum aestivum L.) seedlings. Food Biosciences 30: 100409. https://doi.org/10.1016/j.fbio.2019.04.010

Cheynier, V., Comte, G., Davies, K. M., Lattanzio, V. & Martens, S. (2013). Plant phenolics: recent advances on their biosynthesis, genetics, and ecophysiology. Plant Physiology and Biochemistry 72: 1-20. http://doi.org/10.1016/j.plaphy.2013.05.009

Dinkova-Kostova, A. T. (2008). Phytochemicals as protectors against ultraviolet radiation: versatility of effects and mechanisms. Planta medica 74: 1548-1559. http://doi.org/10.1055/s-2008-1081296

Du, Z. & Bramlage, W. J. (1992). Modified thiobarbituric acid assay for measuring lipid oxidation in sugar-rich plant tissue extracts. Journal of Agricultural and Food Chemistry 40: 1566-1570.

European Commission Recommendation on the efficacy of sunscreen products and the claims made relating thereto, OJ L265, 2006 ?7647 ?EC, 39-43.

Falck, G. C. M., Lindberg, H. K., Suhonen, S., Vippola, M., Vanhala, E., Catalan, J., Savolainen, K. & Norppa, H. (2009). Genotoxic effects of nanosized and fine TiO2. Human and Experimental Toxicology 28: 339-352. https://doi.org/10.1177/0960327109105163

Ferraro, S. A., Domingo, M. G., Etcheverrito, A., Olmedo, D. G. & Tasat, D. R. (2020). Neurotoxicity mediated by oxidative stress caused by titanium dioxide nanoparticles in human neuroblastoma (SH-SY5Y) cells. Journal of Trace Elements in Medicine and Biology 57: 126413. https://doi.org/ 10.1016/j.jtemb.2019.126413

García-Caparros, P., De Filippis, L., Gul, A., Hasanuzzaman, M., Ozturk, M., Altay, V. & Lao, M. T. (2021). Oxidative stress and antioxidant metabolism under adverse environmental conditions: a review. The Botanical Review 87: 421-466. https://doi.org/10.1007/s12229-020-09231-1

Ghasemzadeh, A., Ashkani, S., Baghdadi, A., Pazoki, A., Jaafar, H. Z. & Rahmat, A. (2016). Improvement in flavonoids and phenolic acids production and pharmaceutical quality of sweet basil (Ocimum basilicum L.) by ultraviolet-B irradiation. Molecules 21: 1203. http://doi.org/10.3390/molecules21091203

Grande, F. & Tucci, P. (2016). Titanium dioxide nanoparticles: a risk for human health? Mini Review in Medicinal Chemistry 16: 762-769. https://doi.org/10.2174/1389557516666160321114341

Hilal, M., Parrado, M. F., Rosa, M., Gallardo, M., Orce, L., Massa, E. M. & Prado, F. E. (2004). Epidermal lignin deposition in quinoa cotyledons in response to UV?B radiation. Photochemistry and Photobiology 79: 205-210.

Huarancca Reyes, T., Scartazza, A., Castagna, A., Cosio, E. G., Ranieri, A. & Guglielminetti, L. (2018). Physiological effects of short acute UVB treatments in Chenopodium quinoa Willd. Scientific Reports 8: 1-12. http://doi.org/10.1038/s41598-017-18710-2

Interdonato, R., Rosa, M., Nieva, C. B., González, J. A., Hilal, M. & Prado, F. E. (2011). Effects of low UV-B doses on the accumulation of UV-B absorbing compounds and total phenolics and carbohydrate metabolism in the peel of harvested lemons. Environmental and Experimental Botany 70: 204-211. http://doi.org/10.1016/j.envexpbot.2010.09.006

Javaid, A., Chaudhury, F. A., Khan, I. H. & Ferdosi, M. F. (2022). Potential health-related phytoconstituents in leaves of Chenopodium quinoa. Advances in Life Sciences 9: 574-588.

Jiang, M. & Zhang, J. (2002). Involvement of plasma-membrane NADPH oxidase in abscisic acid-and water stress-induced antioxidant defense in leaves of maize seedlings. Planta 215: 1022-1030. https://doi.org/10.1007/s00425-002-0829-y

Kerr, J. B. (2005). Understanding the factors that affect surface ultraviolet radiation. Optical Engineering 44: 041002. https://doi.org/10.1117/1.1886817

Kim, E., Kim, S. H., Kim, H. C., Lee, S. G., Lee, S. J. & Jeong, S. W. (2011). Growth inhibition of aquatic plant caused by silver and titanium oxide nanoparticles. Toxicology and Environmental Health Sciences 3: 1-6. http://doi.org/10.1007/s13530-011-0071-8

Krishnaiah, D., Khiari, M., Klibet, F. & Kechrid, Z. (2009). Oxidative stress-dependent toxicity of silver nanoparticles in human hepatoma cells. Toxicology In Vitro 23: 1076-1084. http://doi.org/10.1016/j.tiv.2009.06.001

Kumar, M., Tak, Y., Potkule, J., Choyal, P., Tomar, M., Meena, N. L. & Kaur, C. (2020). Phenolics as Plant Protective Companion Against Abiotic Stress In: Lone R, Shuab R, Kamili AN (eds), Plant Phenolics in Sustainable Agriculture (pp. 277-308). Singapore: Springer.

León-Chan, R. G., López-Meyer, M., Osuna-Enciso, T., Sañudo-Barajas, J. A., Heredia, J. B. & León-Félix, J. (2017). Low temperature and ultraviolet-B radiation affect chlorophyll content and induce the accumulation of UV-B-absorbing and antioxidant compounds in bell pepper (Capsicum annuum) plants. Environmental and Experimental Botany 139: 143-151. htttp://doi.org/10.1016/j.envexpbot.2017.05.006

Li, Y., Kui-Shan, W., Xiao, R., Ying-Xian, Z., Feng, W. & Qiang, W. (2018). Response of plant secondary metabolites to environmental factors. Molecules 23: 762. http://doi.org/10.3390/molecules23040762

Lima-Cherubim, D. J., Buzanello-Martins, C. V., Oliveira-Fariña, L. & da Silva de Lucca, R. A. (2020). Polyphenols as natural antioxidants in cosmetics applications. Journal of Cosmetic Dermatology 19: 33-37. http://doi.org/10.1111/jocd.13093

Lorigo, M., Mariana, M. & Cairrao, E. (2018). Photoprotection of ultraviolet-B filters: Updated review of endocrine disrupting properties. Steroids 131: 46-58. https://doi.org/10.1016/j.steroids.2018.01.006

Mariotti, L., Huarancca Reyes, T., Ramos-Diaz, J. M., Jouppila, K., Guglielminetti, L. (2021). Hormonal regulation in different varieties of Chenopodium quinoa Willd. exposed to short acute UV-B irradiation. Plants 10: 858. https://doi.org/10.3390/plants10050858

Melini, F. & Melini, V. (2022) Phenolic compounds in novel foods: insights into white and pigmented quinoa. European Food Research and Technology 248: 2955-2968. http://doi.org/10.1007/s00217-022-04103-x

Mirecki, R. M. & Teramura, A. H. (1984). Effects of ultraviolet-B irradiance on soybean: V. The dependence of plant sensitivity on the photosynthetic photon flux density during and after leaf expansion. Plant Physiology. 74: 475-480.

Myers, R. H., Montgomery, D. C. & Anderson-Cook, C. M. (2009). Response surface methodology. Process and Product optimization using designed experiments. John Wiley & Sons Inc., New Jersey.

Neugart, S., Tobler, M. A. & Barnes, P. W. (2019). Different irradiances of UV and PAR in the same ratios alter the flavonoid profiles of Arabidopsis thaliana (L.) Heynh. types and UV-signaling pathway mutants. Photochemical and Photobiological Sciences 18: 1685-1699. https://doi.org/10.1039/c8pp00496j

Ng, C. Y. & Wang, M. (2021). The functional ingredients of quinoa (Chenopodium quinoa) and physiological effects of consuming quinoa: A review. Food Frontier 2: 329-356. https://doi.org/10.1002/fft2.109

Orqueda, M. E., Moreno, M. A., Zampini, I. C., Bravo, K., Osorio, E. & Isla, M. I. (2021). Potential use of medicinal plants from Argentinean highland as agent anti?photoaging. Journal of Cosmetic Dermatology 20: 1188-1196. https://doi.org/10.1111/jocd.13701

Orqueda, M. E., Zampini, I. C., Bravo, K., Osorio, E. & Isla, M. I. (2022). Potential use of native fruits waste from Argentina as nonconventional sources of cosmetic ingredients. Journal of Cosmetic Dermatology 21: 5058-5065. http://doi.org/10.1111/jocd.14959

Pavelkova, R., Matouskova, P., Hoova, J., Porizka, J. & Marova, I. (2020). Preparation and characterization of organic UV filters based on combined PHB/liposomes with natural phenolic compounds. Journal of biotechnology 324S: 100021. http://doi.org/10.1016/j.btecx.2020.100021

Pérez, M. L., González, J. A. & Prado, F. E. (2015). Efectos de la Radiación Ultravioleta B (UVB) sobre diferentes variedades de Quinoa: I. Efectos sobre la morfología en condiciones controladas. Boletín de la Sociedad Argentina de Botánica 50 (3): 337-347.

Prakash, V. & Anbumani, S. A. (2021). Systematic review on occurrence and ecotoxicity of organic UV filters in aquatic organisms. Reviews of Environmental Contamination and Toxicology 257: 121-161. http://doi.or/10.1007/398_2021_68

Priyanka, S., Mary Shobha, R. I., Nandini, H., Kutty, A. V. M. & Kiranmayee, P. (2018). A pilot study on sun protection factor of plant extracts: An observational study. Asian Journal of Pharmaceutical and Clinical Research 11: 67. http://doi.org/10.22159/ajpcr.2018.v11i4.23671

Radice, M., Manfredini, S., Ziosi, P., Dissette, V., Buso, P., Fallacara, A. & Vertuani, S. (2016). Herbal extracts, lichens and biomolecules as natural photo-protection alternatives to synthetic UV filters. A systematic review. Fitoterapia 114: 144-162. http://doi.org/10.1016/j.fitote.2016.09.003

Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M. & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine 26: 1231-1237.

Rehem, B. C., Bertolde, F. Z. & de Almeida, A. A. F. (2012). Regulation of gene expression in response to abiotic stress in plants. En: P. Bubulyia (ed), Cell Metabolism - Cell Homeostasis and Stress Response (pp. 13-38). USA: InTech.

Reifenrath, K. & Müller, C. (2007). Species-specific and leaf-age dependent effects of ultraviolet radiation on two Brassicaceae. Phytochemistry 68: 875-885. https://doi.org/10.1016/j.phytochem.2006.12.008

Ribeiro, A. S., Estanqueiro, M., Oliveira, M. B. & Sousa Lobo, J. M. (2015). Main benefits and applicability of plant extracts in skin care products. Cosmetics 2: 48-65. https://doi.org/10.3390/cosmetics2020048

Rizi, M. R., Azizi, A., Sayyari, M., Mirzaie-Asl, A. & Conti, L. (2021). Increased phenylpropanoids production in UV-B irradiated Salvia verticillata as a consequence of altered genes expression in young leaves. Plant Physiology and Biochemistry 167: 174-184. http://doi.org/10.1016/j.plaphy.2021.07.037

Rodríguez-Calzada, T., Qian, M., Strid, Å., Neugart, S., Schreiner, M., Torres-Pacheco, I. & Guevara-González, R. G. (2019). Effect of UV-B radiation on morphology, phenolic compound production, gene expression, and subsequent drought stress responses in chili pepper (Capsicum annuum L.). Plant Physiology and Biochemistry 134: 94-102. http://doi.org/10.1016/j.plaphy.2018.06.025

Rozema, J., Björn, L. O., Bornman, J. F., Gaberš?ik, A., Häder, D. P., Trošt, T. & Meijkamp, B. B. (2002). The role of UV-B radiation in aquatic and terrestrial ecosystems-an experimental and functional analysis of the evolution of UV-absorbing compounds. Journal of Photochemistry and Photobiology B: Biology 66: 2-12. http://doi.org/10.1016/s1011-1344(01)00269-x

Ruffino, A. C., Rosa, M., Hilal, M., González, J. A., & Prado, F. (2008). Evolución de metabolitos primarios y pigmentos fotosintéticos durante la ontogenia de cotiledones de quinoa (Chenopodium quinoa Willd.) sometidos a estrés salino. Lilloa 45: 108-118.

Salas, A. L., Correa Uriburu, F. M., Zampini, I. C., Arias, M., Nieva Moreno, M. I., Santillán Deiú, A., Bravo, W., Maldonado, L., Salomón, V. & Isla, M. I. (2020). Hydroalcoholic gel with Argentine propolis: the potential for antimicrobial and antioxidant activities, stability evaluation, and in vitro phenolic release. Journal of Apicultural Research 59: 735-743. https://doi.org/10.1080/00218839.2020.1790791

Sayre, R. M., Agin, P. P., Levee, G. J. & Marlowe, E. (1979). A Comparison of in vivo and in vitro testing of sunscreening formulas. Photochemistry and Photobiology 29: 559-566.

Schulze, E. D., Beck, E., Buchmann, N., Clemens, S., Müller-Hohenstein, K. & Scherer-Lorenzen, M. (2019). Plant Ecology (2nd ed). Springer.

Simonin, M., Richaume, A., Guyonnet, J. P., Dubost, A.; Martins, J. M. & Pommier, T. (2016). Titanium dioxide nanoparticles strongly impact soil microbial function by affecting archaeal nitrifiers. Scientific Reports 6: 33643. https://doi.org/10.1038/srep33643

Singh, P., Singh, A. & Choudhary, K. K. (2023). Revisiting the role of phenylpropanoids in plant defense against UV-B stress. Plant Stress 7: 100143. https://doi.org/10.1016/j.stress.2023.100143

Sun, M., Gu, X., Fu, H., Zhang, L., Chen, R., Cui, L., Zheng, L., Zhang, D. & Tian, J. (2010). Change of secondary metabolites in leaves of Ginkgo biloba L. in response to UV-B induction. Innovative Food Science and Emerging Technologies 11: 672-676. http://doi.org/10.1016/j.ifset.2010.08.006

Swain, T. & Hillis, W. E. (1959). The phenolic constituents of Prunus domestica II.- The quantitative analysis of phenolic constituents. Journal of the Science of Food and Agriculture 10: 63-68.

Taiz, L., Zeiger, E., Møller, M. I. & Murphy, A. (2018). Fundamentals of Plant Physiology. Sinauer Associates Inc., New York.

Takshak, S, Agrawal, S. (2019). Defense potential of secondary metabolites in medicinal plants under UV-B stress. Journal of Photochemistry and Photobiology B: Biology 193: 51-88. https://doi.org/10.1016/j.jphotobiol.2019.02.002

Tang, Y., Li, X., Zhang, B., Chen, P. X., Liu, R. & Tsao, R. (2015). Characterization of phenolics, betanins and antioxidant activities in seeds of three Chenopodium quinoa Willd. genotypes. Food Chemistry 166: 380-388. http://doi.org/10.1016/j.foodchem.2014.06.018

Wellburn, A. R. (1994). The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. Journal of Plant Physiology 144: 307-313.

Wittayathanarattana, T., Wanichananan, P., Supaibulwatana, K. & Goto, E. (2022). Enhancement of bioactive compounds in baby leaf Amaranthus tricolor L. using short-term application of UV-B irradiation. Plant Physiology and Biochemistry 182: 202-215. https://doi.org/10.1016/j.plaphy.2022.04.003

Botánica aplicada: radiación UV-B para la obtención de brotes de quinua enriquecido

Descargas

Publicado

2024-09-18

Cómo citar

Simón Solá, M. Z., Prado, C., Hilal, M., & Rosa, M. D. (2024). Botánica aplicada: radiación UV-B para la obtención de brotes de quinua enriquecidos en compuestos fenólicos, con probables usos en protectores solares naturales o como alimentos funcionales. Lilloa, 253–272. https://doi.org/10.30550/j.lil/1957
سرور مجازی ایران Decentralized Exchange

Número

Sección

Artículos originales
فروشگاه اینترنتی صندلی اداری جوراب افزایش قد ژل افزایش قد خرید vpn سرور مجازی بایننس