Cuantificación de las temperaturas cardinales en cultivares de quinoa (Chenopodium quinoa)


  • Juan A. González Instituto de Ecología, Fundación Miguel Lillo
  • Sebastián E. Buedo Instituto de Ecología, Fundación Miguel Lillo
  • Marcela Bruno Instituto de Ecología, Fundación Miguel Lillo
  • Fernando E. Prado Facultad de Ciencias Naturales e IML, Cátedra de Fisiología Vegetal, Universidad Nacional de Tucumán

Palabras clave:

Germinación, modelos de germinación, germinación anormal, temperatura óptima


González, Juan A.; Sebastián E. Buedo; Marcela Bruno; Fernando E. Prado. 2017. “Cuantificación de las temperaturas cardinales en cultivares de quinoa (Chenopodium quinoa)”. Lilloa 54 (2). La germinación de las semillas y el crecimiento de las plantas son afec- tados por la temperatura. Este estudio fue diseñado para evaluar el efecto de la temperatura sobre la germinación de diez variedades de quinoa bajo un gradiente entre 8 oC y 50 oC. El curso de la germinación en función del tiempo fue ajustado utilizando la función logística. Las semillas abortadas y no germinadas también fueron analizadas en el gradiente de temperatu- ra. Las temperaturas cardinales fueron estimadas por regresión de la inversa del tiempo de germinación al 50 % (velocidad de germinación) contra el gradiente de temperatura. La tempe- ratura mínima (T min ), la óptima (T opt ) y la máxima (T max ) de germinación fueron determinadas utilizando regresiones lineales (modelo bilineal) y polinómicos (modelos cuadráticos y cúbicos). Basados en la T opt estimada a partir de los modelos bilineales y cúbicos las variedades de quinoa estudiadas pueden ser divididas en dos subgrupos: uno representado por Kancolla, Chucapaca, Kamira. Robura y Sajama con un valor de T opt de £ 33 oC, y otro representado por CICA, Sayaña, Amilda, Ratuqui y Samaranti con una T opt ? 33 oC respectivamente. Los porcentajes de germinación máxima obtenida a partir del modelo cuadrático utilizada fueron muy cercanos a aquellos obtenidos en las pruebas de germinación.


Los datos de descargas todavía no están disponibles.


Abugoch James L. E. 2009. Quinoa (Chenopodium quinoa Willd.): composition, chemistry, nutritional, and functional properties. Advances in Food Nutrition Research 58: 1-31.

Bazile D., Fuentes F. F., Mujica A. 2013. Historical perspectives and domestication of quinoa, in: Bhargava, A., Srivastava S. (Eds.), Quinoa: Botany, Production and Uses. CAB International, Wallingford, UK, pp. 16-35.

Bertero H. D. 2001. Effects of photoperiod, temperature and radiation on the rate of leaf appearance in quinoa (Chenopodium quinoa Willd.) under field conditions. Annals of Botany 87: 495-502.

Bertero H. D., King R. W., Hall A. J. 1999. Modelling photoperiod and temperature responses of flowering in quinoa (Chenopodium quinoa Willd.). Field Crops Research 63: 19-34.

Berti M. T., Johnson B. L. 2008. Seed germination response of cuphea to temperature. Industrial Crops and Products 27: 17-21.

Bewley J. D., Black M. 1994. Seeds: Physiology of Development and Germination, second ed. Plenum Press, NewYork, USA.

Bois J. F., Winkel T., Lhomme J. P., Raffaillac J. P., Rocheteau A. 2006. Response of some Andean cultivars of quinoa (Chenopodium quinoa Willd.) to temperature: effects on germination, phenology, growth and freezing. European Journal of Agronomy 25: 299-308.

Bonhomme R. 2000. Bases and limits to using ‘degree day’ units. European Journal of Agronomy 13: 1-10.

Bove J., Jullien M., Grappin P. 2001. Functional genomics in the study of seed germination. Genome Biology, 3(1): reviews 1002.1-1002.5.

Choukr-Allah R., Rao N. K., Hirich A., Shahid M., Alshankiti A., Toderich K., Gill S., Butt K. U. R. 2016. Quinoa for marginal environments: toward future food and nutritional security in MENA and central Asia regions. Frontiers in Plant Science 7: 346.

Covell S., Ellis R. H., Roberts E. H., Summerfield R. J. 1986. The influence of temperature on seed germination rate in grain legumes. Journal of Experimental Botany 37: 705-715.

Dixon M., Webb E. C. 1979. Enzymes. Prentice Hall Press, New Jersey, USA.

Dumur D., Pilbeam C. J., Craigon J. 1990. Use of the Weibul function to calculate cardinal temperatures in Faba bean. Journal of Experimental Botany 41: 1423-1430.

Essemine J., Ammar S., Bouzid S. 2010. Impact of heat stress on germination and growth in higher plants: physiological, biochemical and molecular repercussions on mechanisms defence. Journal of Biological Sciences 10: 565-572.

González J. A., Prado F. E. 1992. Germination in relation to salinity and temperature in Chenopodium quinoa (Willd.). Agrochimica 36: 101-108.

Gonzalez J. A., Konishi Y.; Bruno M., Valoy M., Prado F. E. 2011. Interrelationships among seed yield, total protein and amino acid composition of ten quinoa (Chenopodium quinoa) cultivars from two different agroecological regions. Journal of the Science of Food and Agriculture 92: 1222-1229.

González J. A., Eisa S., Hussin S., Prado F. E. 2015. Quinoa: an Incan Crop to Face Global Changes in Agriculture. In: Murphy, K.S., Matanguihan, J. (Eds.). Quinoa: Improvement and Sustainable Production. Wiley-Blackwell, Hoboken, NJ, USA, pp. 1-18.

Hardegree S. P. 2006. Predicting germination response to temperature. I. Cardinal-temperature models and subpopulation-specific regression. Annals of Botany 97: 1115-1125.

Hasanuzzaman M., Vahar K., Fujita M. 2013. Extreme temperature responses, oxidative stress and antioxidant defense in plants, in: Vahdati, K., Leslie, C. (Eds.), Abiotic Stress – Plant Responses and Applications in Agriculture. InTech, Croatia, pp. 169-203.

Jacobsen S. E., Bach A. P. 1998. The influence of temperature on seed germination rate in quinoa (Chenopodium quinoa Willd). Seed Science and Technology 26: 515-523.

Jacobsen S. E., Monteros C., Christiansen J. L., Bravo L. A., Corchera L. J., Mujica A. 2005. Plant responses of quinoa (Chenopodium quinoa Willd.) to frost at various phenological stages. European Journal Agronomy 22: 131-139.

KakaniV. G.,Prasad P. V. V.,Craufurd P. Q., Wheeler T. R. 2002. Response on in vitro pollen germination and pollen tube growth of groundnut (Arachis hypogaea L.) genotypes to temperature. Plant, Cell and Environment 25: 1651-1661.

Kamkar B., Al-Alahmadi M. J., Mahdavi-Damghani A., Villalobos F. J. 2012. Quantification of the cardinal temperatures and thermal time requirement of opium poppy (Papaver somniferum L.) seeds to germinate using non-linear regression models. Industrial Crops and Products 35: 192-198.

K’Opondo F. B. O., Groot S. P. C., Van Rheenen H. A. 2011. Determination of temperature and light optima for seed germination and seedling development of spiderplant (Cleome gynandra L.) morphotypes from western Kenya. Annals Biological Research 2: 60-75.

Luna B., Pérez B., Torres I., Moreno J. M. 2012. Effects of incubation temperature on seed germination of Mediterranean plants with different geographical distribution ranges. Folia Geobotanica 47: 17-27.

Naim A. H., Ahmed F. E. G. 2015. Variation in thermal time model parameters between two contrasting chickpea (Cicer arietinum) cultivars. Agricultural Sciences 6: 1421-1427.

National Research Council. 1989. Lost Crops of the Incas: Little-Known Plants of the Andes with Promise for Worldwide Cultivation. National Academy Press, Washington, DC, USA.

Nonogaki H., Bassel G. W., Bewley J. D. 2010. Germination still a mystery. Plant Science 179: 574-581.

Pineda Mejia R. 1999. Effects of stress temperatures of germination on polyamine titers of soybean seeds. Ph.D. thesis, Iowa State University, USA, pp. 97.

Prado F. E., Boero C., Gallardo M., González J. A. 2000. Effect of NaCl on germination, growth, and soluble sugar content in Chenopodium quinoa Willd. seeds. Botanical Bulletin of Academia Sinica 41: 27-34.

Prado F. E, Fernández-Turiel J. L., Tsarouchi M., Psaras G. K., González J. A. 2014. Variation of seed mineral concentrations in seven quinoa cultivars grown in two agroecological sites" Cereal Chemistry 91: 453-459.

Risi J., Galwey N. W. 1984. The Chenopodium grains of the Andes: Inca crops for modern agriculture. Advances in Applied Biology 10: 145-216.

Rodriguez J. P., Jacobsen S. E., Sørensen M., Andreasen C. 2016. Germination responses of cañahua (Chenopodium pallidicaule Aellen) to temperature and sowing depth: a crop growing under extreme conditions. Journal of Agronomy and Crop Science. DOI: 10.1111/jac.12158.

Rosa M., Hilal M., González J. A., Prado F. E. 2004. Changes in soluble carbohydrates and related enzymes induced by low temperature during early developmental stages of quinoa (Chenopodium quinoa Willd.) seedlings. Journal of Plant Physiology 161: 683-689.

Saeidnejad A. H., Kafi M., Pessarakli M. 2012. Evaluation of cardinal temperatures and germination responses of four ecotypes of Bunium persicum under different thermal conditions. International Journal of Agriculture and Crop Sciences 4: 1266-1271.

SAS Statistical Analysis Software for Windows. Release 9.1.3., 2010. Cary, North Carolina, USA.

Seepaul R., Macoon B., Reddy K. R., Baldwin B. 2011. Switchgrass (Panicum virgatum L.) intraspecific variation and thermotolerance classification using in vitro seed germination assay. American Journal of Plant Sciences 2: 134-147.

Strenske A., Soares de Vasconcelos, E., Egewarth V. A, Michelon Herzog N. F., de Matos Malavasi M. 2017. Responses of quinoa (Chenopodium quinoa Willd.) seeds stored under different germination temperaturas. Acta Scientiarum. Agronomy Maringá 39: 83-88.

Vange V., Heuch I., Vandvik V. 2004. Do seed mass and family affect germination and juvenile performance in Knautia arvensis? A study using failure-time methods. Acta Oecologica 25: 169-178.

Vega-Gálvez A., Miranda M., Vergara J., Uribe E., Puente L., Martínez E. A. 2010. Nutrition facts and functional potential of quinoa (Chenopodium quinoa willd.), an ancient Andean grain: a review. Journal of the Science of Food and Agriculture 90: 2541-2547.

Wang R., Bai Y., Tanino K. 2004. Effect of size and sub-zero imbibition-temperature on the thermal time model of winterfat (Eurotia lanata (Pursh) Moq.). Environmental and Experimental Botany 51: 183-197.

White S. N., Boyd N. S., Van Acker R. C. 2015. Temperature thresholds and growing-degree-day models for red sorrel (Rumex acetosella) ramet sprouting, emergence, and flowering in wild blueberry. Weed Science 63: 254-263.

Yan W., Hunt L. A. 1999. An equation for modeling the temperature response of plants using only the cardinal temperature. Annals of Botany 84: 607-614.




Cómo citar

González, J. A., Buedo, S. E., Bruno, M., & Prado, F. E. (2017). Cuantificación de las temperaturas cardinales en cultivares de quinoa (Chenopodium quinoa). Lilloa, 54(2), 179–194. Recuperado a partir de
صندلی اداری سرور مجازی ایران Decentralized Exchange



Artículos originales

Artículos más leídos del mismo autor/a

فروشگاه اینترنتی صندلی اداری جوراب افزایش قد ژل افزایش قد خرید vpn خرید vpn سرور مجازی بایننس