Los hongos micorrícicos arbusculares y las redes micorrízicas comunes benefician a las plantas a través de caracteres morfológicos, fisiológicos y productivos y la calidad del suelo




Palabras clave:

Redes micorrízicas comunes, caracteres morfológicos, fisiológicos y productivos, calidad de suelo


Las hifas extraradicales de los hongos micorrízicos arbusculares (HMA) de un sistema radical vegetal se proveen de nutrientes del suelo e inducen la colonización de las raíces de las plantas cercanas. Esto conduce a la formación de redes micorrízicas comunes (RMCs) que interconectan los sistemas radicales. La inoculación con los HMA puede incrementar la longitud radical, el área superficial y el volumen de las plántulas en suelos kársticos limitados en nutrientes. La simbiosis micorrízica es capaz de secretar glomalina que incrementa el almacenaje de agua y nutrientes en los agregados del suelo, a través de una extensión de las hifas que permite absorber agua y nutrientes desde largas distancias. Los HMA pueden enriquecer la actividad de las enzimas que están en la rizosfera del suelo, y pueden ayudar a incrementar el secuestro de carbono. Los HMA también benefician el crecimiento de las plantas mejorando la estructura y textura del suelo. Como resultado, los HMA y las RMCs benefician a las plantas modificando el suelo y mejorando caracteres morfológicos (ej., longitud de hifas, macollaje, número de estolones por individuo), fisiológicos (ej. eficiencia de uso del agua) y productivos (ej. pesos frescos y secos del tallo y de las raíces).


Los datos de descargas todavía no están disponibles.


Ahanger, M. A., Tyagi, S. R., Wani, M. R. & Ahmad, P. (2014). Drought tolerance: role of organic osmolytes, growth regulators, and mineral nutrients. In: P. Ahmad and M.R. Wani (Eds.). Physiological mechanisms and adaptation strategies in plants under changing environment (pp. 25–55). New York: Springer). https://doi.org/10.1007/978-1-4614-8591-9_2

Awaydul, A., Zhu, W. Y., Yuan, Y. G., Xiao, J., Hu, H., Chen, X., Koide, R. T. & Cheng, L. (2019). Common mycorrhizal networks influence the distribution of mineral nutrients between an invasive plant, Solidago canadensis, and a native plant, Kummmerowa striata. Mycorrhiza 29: 29-38. https://doi.org/10.1007/s00572-018-0873-5

Barrow, C. J. (2012). Biochar potential for countering land degradation and for improving agriculture. Applied Geography 34: 21-28. https://10.1016/j.apgeog.2011.09.008

Bedini, S., Pellegrino, E., Avio, L., Pellegrini, S., Bazzoffi, P., Argese, E., Giovannetti, M. (2009). Changes in soil aggregation and glomalin-related soil protein content as affected by the arbuscular mycorrhizal fungal species Glomus mosseae and Glomus intraradices. Siol Biology and Biochemestry 41: 1491-1496.

Begum, N., Qin, C., Ahanger, M. A., Raza, S., Khan, M. I., Ashraf, M., Ahmed, N. & Zhang, L. (2019). Role of Arbuscular Mycorrhizal Fungi in Plant Growth Regulation: Implications in Abiotic Stress Tolerance. Frontiers in Plant Science 10: article 1068. https://doi.org/10.3389/fpls.2019.01068

Bowles, T. M., Barrios-Masias, F. H., Carlisle, E. A., Cavagnaro, T. R. & Jackson, L. E. (2016). E?ects of arbuscular mycorrhizae on tomato yield, nutrient uptake, water relations, and soil carbon dynamics under deficit irrigation in field conditions. Science of the Total Environment 566: 1223-1234. https://doi.org/10.1016/j.scitotenv.2016.05.178

Campbell, B., Grime, J. & Mackey, J. (1991). A trade-off between scale and precision in resource foraging. Oecologia 87: 532-538.

Casper, B. B. & Jackson, R. B. (1997). Plant Competition Underground. Annual Review of Ecology and Systematics 28: 545-570.


Chai, Q., Gan, Y. T., Turner, N. C., Zhang, R. Z., Yang, C., Niu, Y. N. & Siddique, D. K. M. (2014). Water-saving innovations in Chinese agriculture. Advances in Agronomy 126: 149-201.

Cuello, J. P., Hwang, H. Y., Gutierrez, J., Kim, S. Y. & Kim, P. J. (2015). Impact of plastic film mulching on increasing greenhouse gas emissions in temperate upland soil during maize cultivation. Applied Soil Ecology 91: 48-57.

De Kroon, H. & Visser E. J. (2013). Root ecology: Springer Science and Business Media.

Driver, J. D., Holben, W. E. & Rilling, M. C. (2005). Characterization of glomalin as a hyphal wall component of arbuscular mycorrhizal fungi. Soil Biology and Biochemistry 37: 101-106.

Duan, H. X., Luo, Ch. L., Li, J. Y., Wang, B. Z., Naseer, M. & Xiong, Y. C. (2021). Improvement of wheat productivity and soil quality by arbuscular mycorrhizal fungi is density- and moisture-dependent. Agronomy for Sustainable development 41 (3). https://doi.org/10.1007/s13593-020-00659-8

Eissenstat, D. M. & Newman, E. I. (1990). Seedling establishment near large plants: effects of vesicular-arbuscular mycorrhizas on the intensity of plant competition. Functional Ecology 4: 95-99.

Fitter, A., Caldwell, M. & Pearcy, R. (1994). Architecture and biomass allocation as components of the plastic response of root systems to soil heterogeneity. In: Caldwell, M.M. & Pearcy, R., eds. Exploitation of environmental heterogeneity by plants. San Diego, CA: Academic Press, pp. 305–323. https://doi.org/10.1016/B978-0-12-155070-7.50016-0

Gao, Y. H., Xie, Y. P., Jiang, H. Y., Wu, B. & Niu, J. Y. (2014). Soil water status and root distribution across the rooting zone in maize with plastic film mulching. Field Crops Research 156: 40-47.

He, Y. J. & Zhong, Z. C., 2012. Effects of water stress and AM inoculation on root morphological characteristics in Cinnamomum camphora seedlings. Journal of the Southwest University 34: 033-039. https//doi.org./10.13718/j.cnki.xdzk.2012.04.27

Henke, M., Sarlikioti, V., Kurth, W., Buck-Sorlin, G. H. & Pagès, L. (2014). Exploring root developmental plasticity to nitrogen with a three-dimensional architectural model. Plant and Soil 385: 49-62.

Hodge, A. (2004). The plastic plant: root responses to heterogeneous supplies of nutrients. New Phytologist 162: 9-24. https://doi.org/10.1111/j.1469-8137.2004.01015.x

Hodge, A., Gosling, P., Goodless, G., & Bending, G. D. (2004). Arbuscular mycorrhizal fungi in organic systems. Research Policy and International Division, Final Reports Unit DEFRA, Area 301 Cromwell House, Dean Stanley Street, London. https://orgprints.org/id/eprint/6772/

Hogh-Jensen, H. (2006). The nitrogen transfer between plants: an important but difficult flux to quantify. Plant and Soil 282: 1-5.

Koch, A. M., Kuhn, G., Fontanillas, P., Fumagalli, L., Goudet, J. & Sanders, I. R. (2004). High genetic variability and low local diversity in a population of arbuscular mycorrhizal fungi. Proceedings of the National. Academy of Science 101: 2369-2374.

Kohler, J., Caravaca, F., Algucil, M. D.& Roldan, A. (2009). Elevated CO2 increases the effect of an arbuscular mycorrhizal fungus and a plant-growth-promoting rhizobacterium on structural stability of a semiarid agricultural soil under drought conditions. Soil Biology and Biochemistry 41: 1710-1716.

Lee, M. R., Tu, C., Chen, X., Hu, S. (2014). Arbuscular mycorrhizal fungi enhance P uptake and alter plant morphology in the invasive plant Microstegium vimineum. Biological Invasions 16: 1083-1093. https://doi.org/10.1007/s10530-013-0562-4

Li, R., Hou, X. Q., Jia, Z. K., Han, Q. F., Ren, X. L. & Yang, B. P. (2013). Effects on soil temperature, moisture, and maize yield of cultivation with ridge and furrow mulching in the rainfed area of the Loess Plateau. China Agricultural Water Management 116: 101-109.

Li, H., Xiang, D., Wang, C., Li, X. I. & Lou, Y. (2012). Effects of epigeic earthworm (Eisenia fetida) and arbuscular mycorrhizal fungus (Glomus intraradices) on enzyme activities of a sterilized soil-sand mixture and nutrient uptake by maize. Biology and Fertility of Soils 48: 879-887.

Lin, S. S., Sun, X. W., Wang, X. J., Dou, C. Y., Li, Y. Y., Luo, Q. Y., Sun, L. & Jin, L. (2013). Mycorrhizal studies and their application prospects in China. Acta Pratac Sin. 22: 310-325. https://doi.org/10.1168/cyxb20130537

Liu, R. J., Sheng, P. P., Hui, H. B., Lin, Q. & Chen, Y. L. (2015). Integrating irrigation management for improved grain yield of winter wheat and rhizosphere AM fungal diversity in a semi-arid cropping system. Agricultural Systems 132: 167-173.

Mo, F., Han, J., Wen, X. X., Wang, K. K., Li, P. F., Vinay, N., Jia, Z. K., Xiong, Y. C. & Liao, Y. C. (2020). Quantifying regional effects of plastic mulch on soil nitrogen pools, cycles, and fluxes in rain-fed agro-ecosystems of the Loess Plateau. Land Degradation and Development 1: 1-13.

Mommer, L., Visser, E. J., van Ruijven, J., de Caluwe, H., Pierik, R. & de Kroon, H. (2011). Contrasting root behaviour in two grass species: a test of functionality in dynamic heterogeneous conditions. Plant and Soil 344 (1): 347-360.

Mowery, D. C., Nelson, R. R. & Martin, B. R. (2010). Technology policy and global warming: why new policy models are needed (or why putting new wine in old bottles won´t work). Research Policy 39: 1011-1023.

Muneer, M. A., Wang, P., Zaib-un-Nisa, Lin Ch. & Ji, B. (2020). Potential role of common mycorrhizal networks in improving plant growth and soil physicochemical properties under varying levels in a grassland ecosystem. Global Ecology and Conservation 24: e01352. https://doi.org/10.1016/j.gecco.2020.e01352

Nara, K. (2006). Ectomycorrhizal networks and seedling establishment during early primary succession. New Phytologist 169: 169-178.

Navarro, J. M., Perez-Tornero, O. & Morte, A. (2014). Alleviation of salt stress in citrus seedlings inoculated with arbuscular mycorrhizal fungi depends on the root stock salt tolerance. Journal of Plant Physiology 171: 76-85. https://doi.org/10.1016/j.jplph.2013.06.006

Nottingham, A. T., Turner, B. L., Winter, K., Chamberlain, P. M., Stott, A. & Tanner, E. V. (2013). Root and arbuscular mycorrhizal mycelial interactions with soil microorganisms in lowland tropical forest. FEMS Microbiology Ecology 85: 37-50. https://doi.org/10.1111/1574-6941.12096

Oelofse, M., Hogh-Jensen, H., Abreu, L. S., Almeida, G. F., Hui, Q. Y. & Sultan, T. N. A. (2010). Certified organic agriculture in China and Brazil: market accessibility and outcomes following adoption. Economía ecológica 69 (9): 1785-1793.

Ortas, I. (2012). The effect of mycorrhizal fungal inoculation on plant yield, nutrient uptake and inoculation effectiveness under long-term field conditions. Field Crops Research 125: 35-48. https://doi.org/ 10.1016/j.fcr.2011.08.005

Osmont, K. S., Sibout, R. & Hardtke, C. S. (2007). Hidden branches: developments in root system architecture. Annual Review of Plant Biology 58: 93-113. https://doi.org/10.1146/annurev.arplant.58.032806.104006

Pandey, V., & Chandra, K. (2016). Agriculturally important microorganisms as biofertilizers: Commercialization and regulatory requirements in Asia. In: Sing, H., Sarma, B. and Keswani, C. (eds.). Agricultural important microorganisms. Singapore Springer. https://doi.org/101007/978-981-10-2576-1_8

Paterson, E., Sim, A., Davidson, J. & Daniell, T. J. (2016). Arbuscular mycorrhizal hyphae promote priming of native soil organic matter mineralization. Plant Soil 408: 243-254. https://doi.org/10.1007/s11104-016-2928-8

Pregitzer, K. S., DeForest, J. L., Burton, A. J., Allen, M. F., Ruess, R. W. & Hendrick, R. L. (2002). Fine root architecture of nine North American trees. Ecological Monograph 72: 293-309. https://doi.org/10.1890/0012-9615(2002)072[0293:FRAONN]2.0.CO;2

Pringle, A., Bever, J. D., Gardes, M., Parrent, J. L., Rillig, M. C. & Klironomos, J. N. (2009). Mycorrhizal symbioses and plant invasions. Annual Review of Ecology, Evolution and Systematics 40: 699-715. https://doi.org/10.1146/annurev.ecolsys.39.110707.173454

Qi, R. M., Li, J., Lin, Z. A., Li, Z. J., Li, Y. T., Yang, X. D., Zhang, J. J. & Zhao, B. Q. (2016). Temperature effects on soil organic carbon, soil labile organic carbon fractions, and soil enzyme activities under long-term fertilization regimes. Applied Soil Ecology 102: 36-45.

Rahimzadeh, S. & Pirzad, R. A. (2017). Microorganisms (AMF and PSB) interaction on linseed productivity under water deficit condition. International Journal of Plant Production 11: 259-273.

Rubio, G., Walk, T., Ge, Z. Y., Yan, X. L., Liao, H. & Lynch, J. P. (2001). Root gravitropism and belowground competition among neighboring plants: a modelling approach. Annals of Botany 88: 929-940. https://doi.org/10.1006/anbo.2001.1530

Ruth, B., Khalvati, M. & Schmidhalter, U. (2011). Quantification of mycorrhizal water uptake via high-resolution on-line water content sensors. Plant and Soil 342: 459-468.

Sadhana, B. (2014). Arbuscular mycorrhizal fungi (AMF) as a biofertilizers-a review. International Journal of Current Microbiology and Applied Science 3: 384-400.

Selosse, M. A., Strullu-Derrien, C., Martin, F. M., Kamoun, S. & Kenrick, P. (2015). Plants, fungi and oomycetes: a 400-million years affair that shapes the biosphere. New Phytologist 206: 501-506. https://doi.org/10.1111/nph.13371

Sharma, S., Prasad, R., Varma, A., & Sharma, A. K. (2017). Glycoprotein associated with Funneliformis coronatum, Gigaspora margarita and Acaulospora scrobiculata suppress the plant pathogens in vitro. Asian Journal of Plant Pathology 11: 192-202. https://doi.org/10.3923/ajppaj.2017.199.202

Smith, S. E. & Read, D. J. (2008). Mycorrhizal symbiosis, third ed. Academic Press. Elsevier, London.

Sui, X., Zhang, T., Tian, Y., Xue, R. & Li, A. (2019). A neglected alliance in battles against parasitic plants: arbuscular mycorrhizal and rhizobial symbioses alleviate damage to a legume host by root hemiparasitic Pedicularis species. New Phytologist 221: 470-481.

Thirkell, T. J., Charters, M. D., Elliott, A. J., Sait, S. M. & Field, K. J. (2017). Are mycorrhizal fungi our sustainable saviours? Considerations for achieving food security. Journal of Ecology 105: 921-929. https://doi.org/10. 1111/1365-2745.12788

Torn, M. S., Trumbore, S. E., Chadwick, O. A., Vitousek, P. M. & Hendricks, D. M. (1997). Mineral control of soil organic carbon storage and turnover. Nature 389: 170-173.

Trejo, D., Barois, L. & Sangabriel-Conde, W. (2016). Disturbance and land use effect on functional diversity of the arbuscular mycorrhizal fungi. Agroforestry Systems 90: 265-279.

Van Der Heijden, M. G., Bardgett, R. D. & Van Straalen, N. M. (2008). The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecology Letters 11: 296-10. https://doi.org/10.1111/j.1461-0248.2007.01139.x

Van Der Heijden, M. G., Martin, F. M., Selosse, M. A. & Sanders, I. R. (2015). Mycorrhizal ecology and evolution: the past, the present, and the future. New Phytologist 205: 1406-1423. https://doi.org/10.1111/nph.13288

Wang, Y. J., Chen, D., Yan, R., Yu, F. H. & van Kleunen, M. (2019). Invasive alien clonal plants are competitively superior over co-occurring native clonal plants. Perspectives in Plant Ecology, Evolution and Systematics 40: 125484. https://doi.org/10.1016/j.ppees.2019.125484

Wang, J. Y., Mo, F., Nguluu, S. N., Zhou, H., Ren, H. X., Zhang, J., Kariuki, C. W., Gicheru, P., Kavaji, L., Xiong, Y. C. & Li, F.M. (2016). Exploring micro-field water harvesting farming system in dryland wheat (Triticum aestivum L.): An innovative management for semiarid Kenya. Field Crops Research 196: 207-218.

Wang, Y. P., Li, X. G., Fu, T., Wang, L., Turner, N. C., Siddique, K. H. M. & Li, F. M. (2016a). Multi-site assessment of the effects of plastic-film mulch on the soil organic carbon balance in semiarid arid areas of China. Agricultural and Forest Meteorology 228-229: 42-51.

Wang, Y. P., Li, X. G., Zhu, J., Fan, C. Y., Kong, X. J., Turner, N. C., Siddique, K. J. M. & Li, F. M. (2016b). Multi-site assessment of the effects of plastic-film mulch on dryland maize productivity in semiarid areas in China. Agricultural and Forest Meteorology 220: 160-169.

Weremijewicz, J. & Janos, D. P. (2013). Common mycorrhizal networks amplify size inequality in Andropogon gerardii monocultures. New Phytologist 198: 203-213. https://doi.org/10.1111/nph.12125

Weremijewicz, J., O’Reilly Sternberg, L. S. L. & Janos, D. P. (2016). Common mycorrhizal networks amplify competition by preferential mineral nutrient allocation to large host plants. New Phytologist 212: 461-471. https://doi.org/10.1111/nph.14041. PMID: 27265515

Wezel, A., Casagrande, M., Celette, F., Vian, J. F., Ferrer, A. & Peigné, J. (2014). Agroecological practices for sustainable agricultura: A review. Agronomy for sustainable development 34: (1): 1-20.

Wu, Z., McGrouther, K., Huang, J., Wu, P., Wu, W. & Wang, H. (2014). Decomposition and the contribution of glomalin-related soil protein (GRSP) in heavy metal sequestration: field experiment. Soil Biology and Biochemistry 68: 283-290. https://doi.org/10.1029/2007JD008789

Wu, Q. S. & Xia, R. X. (2006). Arbuscular mycorrhizal fungi influence growth, osmotic adjustment and photosynthesis of citrus under well-watered and water stress conditions. Journal of Plant Physiology 163: 417-425.

Wynn, J. G. & Bird, M. I. (2007). C4-derived soil organic carbon decomposes faster than its C3 counterpart in mixed C3/C4 soils. Global Change Biology 13: 2206-2217.

Xia, T., Wang, Y., He, Y., Wu, Ch., Shen, K., Tan, Q., Kang, L., Guo, Y., Wu, B. & Han, X. (2020). An invasive plant experiences greater benefits of root morphology from enhancing nutrient competition associated with arbuscular mycorrhizae in karst soil than a native plant. PloS One 15: e0234410. http://doi.org/10.1371/journal.pone.0234410

Yang, Y., He, Y. J., Dong, M., Wang, P. P. & Xie, P. Y. (2017). Effects of common mycorrhizal networks on nitrogen acquisition and growth traits of different plants in Karst areas. Acta Ecologica Sinica 37: 8477-8485. https://doi.org/10.5846/stxb201610172111

Yang, S., Li, F., Malhi, S. S., Wang, P., Dongrang, S. & Wang, J. (2004). Long term fertilization effects on crop yield and nitrate nitrogen accumulation in soil in Northwestern China. Agronomy Journal 96: 1039-1049. https://doi.org/10.2134/agronj2004.103

Youngberg, G. & DeMuth, S. P. (2013). Organic agriculture in the United States: a 30-year retrospective. Renewable Agriculture and Food Systems 28: 294-328.

Yu, W. Q., Wan, F. H., He X. H., Liu, W. Z.& Zhang, L. L. (2014). Soil microbes enhance competition ability of the exotic Ageratina Adenophora Sprengel against native plant species. Journal Biosaf 23: 156-164.

Zabinski, C., Quinn, L. & Callaway, R. (2002). Phosphorus uptake, not carbon transfer, explains arbuscular mycorrhizal enhancement of Centaurea maculosa in the presence of native grassland species. Functional Ecology 16: 758-765. https://doi.org/10.1046/j.1365-2435.2002.00676.x

Zhang, X., Li, W., Fang, M., Jixian, Y. & Meng, S. (2016). Effects of arbuscular mycorrhizal fungi inoculation on carbon and nitrogen distribution and grain yield and nutritional quality in rice (Oryza sativa L.). Journal of the Science of Food and Agriculture 97 (9): 2919-2925. https://doi.org/10.1002/jsfa.8129

Zhang, F. J., Li, Q., Yerger, E. H., Chen, X., Shi, Q. & Wan, F. H. (2018). AM fungi facilitate the competitive growth of two invasive plant species, Ambrosia artemisiifolia and Bidens pilosa. Mycorrhiza 28: 703-15. https://doi.org/10.1007/s00572-018-0866-4

Zhang, Z. F., Zhang, J. C., Huang, Y. Q., Guo, X. P., Yang, H. & Deng, Y. (2015). Effects of water stress and mycorrhizal fungi on root morphology of Cyclobalanopsis glauca seedlings. Chinese Journal of Ecology 34: 98-204. https://doi.org/10.13292/j.1000-4890.20150311.011

Zhao, H., Xiong, Y. C., Li, F. M., Wang, R. Y., Qiang, S. C., Yao, T. F.& Mo, F. (2012). Plastic film mulch for half growing-season maximized WUE and yield of potato via moisture-temperature improvement in a semi-arid agroecosystem. Agricultural Water Management 104: 68-78.

Zhou, L. M., Li, F. M., Jin, S. L. & Song, Y. J. (2009). How two ridges and the furrow mulched with plastic film affect soil water, soil temperature and yield of maize on the semiarid Loess Plateau of China. Field Crops Research 113: 41-47.

Zhu, Y., Lv., G. Ch., Chen, Y. L., Gong, X. F., Peng, Y. N., Wang, Z. Y., Ren, A. T. & Xiong, Y. C. (2017). Inoculation of arbuscular mycorrhizal fungi with plastic mulching in rainfed wheat: A promising farming strategy. Field Crops Research 204: 229-241.

Xia, T., Wang, Y., He, Y., Wu, C., Shen, K., Tan, Q., Kang, L., Guo, Y. & Wu, B. (2020). An invasive plant experiences greater benefits of root morphology from enhancing nutrient competition associated with arbuscular mycorrhizae in karst soil than a native plant. PLoS One 15 e0234410. https://doi.org/10.1371/journal.pone.0234410

Los hongos micorrícicos arbusculares



Cómo citar

Busso, M. A., & Busso, M. . (2022). Los hongos micorrícicos arbusculares y las redes micorrízicas comunes benefician a las plantas a través de caracteres morfológicos, fisiológicos y productivos y la calidad del suelo . Lilloa, 59(2), 301–317. https://doi.org/10.30550/j.lil/2022.59.2/2022.12.02



Artículos originales

Artículos más leídos del mismo autor/a