Ácido abscísico, y tolerancia al estrés hídrico inducido por ácido abscísico en plantas herbáceas y de olivo (Olea europaea) micorrizadas

Autores/as

DOI:

https://doi.org/10.30550/j.lil/1689

Palabras clave:

Estrés hídrico, fitohormonas, micorrizas arbusculares, olivo, tolerancia al estrés

Resumen

La expansión de áreas afectadas por la sequía en el mundo tiene un efecto negativo en el rendimiento y la producción de cosechas, haciendo que el estrés hídrico sea el estrés abiótico más significativo que limita el crecimiento y desarrollo de las plantas. El uso de hongos micorrízicos arbusculares (HMA) es una estrategia que alivia los efectos de este estrés de una manera sostenible. Esto es debido al incremento en la tolerancia al estrés hídrico en plantas inoculadas con estos hongos. La agricultura moderna está enfrentando el desafío para asegurar una demanda global de alimentos. Sin embargo, el cambio climático está causando un incremento de temperatura que conduce a la producción de severas sequías en algunas áreas. Numerosas técnicas biotecnológicas se están utilizando para superar los efectos producidos por este estrés. Entre ellas, se piensa que el uso de los HMA es un excelente enfoque para reducir tales efectos.  Los hongos micorrízicos arbusculares proveen tolerancia al estrés hídrico por medio de mecanismos bioquímicos y fisiológicos. Algunos de los mecanismos incluyen la modificación de los balances hormonales comprendiendo los ácidos abscisico, giberélico, salicílico y jasmónico, y las strigolactonas. La simbiosis de los HMA cambia la expresión de las acuaporinas (canales que transportan agua) de la membrana plasmática y el tonoplasto, lo cual mejora el estado hídrico de la planta.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Agurla, S., Gayatri, G., Raghavendra, A. S. (2017). Signal Transduction Components in Guard Cells During Stomatal Closure by Plant Hormones and Microbial Elicitors. In: Pandey, G.K. (Ed.), Mechanism of Plant Hormone Signaling under Stress. Part IV: Involvement of Multiple Phytohormones in Stress Responses (pp. 353-387). Hoboken: John Wiley & Sons. https://doi.org/10.1002/9781118889022 DOI: https://doi.org/10.1002/9781118889022.ch30

Aslam, M. M., Waseem, M., Jakada, B. H., Okal, E. J., Lei, Z., Saqib, H. S. A., Yuan, W., Xu, W. & Zhang, Q. (2022). Mechanisms of Abscisic Acid-Mediated Drought Stress Responses in Plants. International Journal of Molecular Science 23: 1084. https://doi.org/10.3390/ijms23031084 DOI: https://doi.org/10.3390/ijms23031084

Bahadur, A., Batool, A., Nasir, F., Jiang, S., Mingsen, Q., Zhang, Q., Pan, J., Liu, Y. & Feng, H. (2019). Mechanistic Insights into Arbuscular Mycorrhizal Fungi-Mediated Drought Stress Tolerance in Plants. International Journal of Molecular Science 20: 4199. https://doi.org/10.3390/ijms20174199 DOI: https://doi.org/10.3390/ijms20174199

Begum, N., Qin, Ch., Ahanger, M. A., Raza, S., Khan, M. I., Ashraf, M., Ahmed, N. & Zhang, L. (2019). Role of Arbuscular Mycorrhizal Fungi in Plant Growth Regulation: Implications in Abiotic Stress Tolerance. Frontiers in Plant Science 10: 1068. https://doi.org/10.3389/fpls.2019.01068 DOI: https://doi.org/10.3389/fpls.2019.01068

Bizos, G., Papatheodorou, E. M., Chatzistathis, T., Ntalli, N., Aschonitis, V. G. & Monokrousos, N. (2020). The role of microbial inoculants on plant Protection, growth stimulation and crop productivity of the olive tree (Olea uropaeae L.). Plants 9: 743. https://doi.org/10.3390/plants9060743 DOI: https://doi.org/10.3390/plants9060743

Bompadre, M. J., Pérgola, M., Fernández Bidondo, L., Colombo, R. P., Silvani, V. A., Pardo, A. G., Ocampo, J. A., & Godeas, A. M. (2014). Evaluation of arbuscular mycorrhizal fungi capacity to alleviate abiotic stress of olive (Olea europaea L.) plants at different transplant conditions. The Scientific World Journal, article ID: 378950: 12 pages. http://dx.doi.org/10.1155/2014/378950 DOI: https://doi.org/10.1155/2014/378950

Busso, M. A. & Busso, M. B. (2022). AMF and common mycorrhizal networks benefit plants through morphological, physiological and productive traits and soil quality. Lilloa 59: 301-317. https://doi.org/10.30550/j.lil/2022.59.2/2022.12.02 DOI: https://doi.org/10.30550/j.lil/2022.59.2/2022.12.02

Calvo-Polanco, M., Sánchez-Castro, I., Cantos, M., García, J. L., Azcón, R., Ruiz-Lozano, J. M., Beuzón, C. R. & Aroca, R. (2016). Effects of different arbuscular mycorrhizal fungal backgrounds and soils on olive plants growth and water relation properties under well-watered and drought conditions. Plant, Cell and Environment 39: 2498-2514. https://doi.org/10.1111/pce.12807 DOI: https://doi.org/10.1111/pce.12807

Canales, F. J., Rispail, N., García-Tejera, O., Arbona, V., Pérez-de-Luque, A., & Prats, E. (2021). Drought resistance in oat involves ABA-mediated modulation of transpiration and root hydraulic conductivity. Environmental and Experimental Botany 182: 104333. https://doi.org/10.1016/j.envexpbot.2020.104333 DOI: https://doi.org/10.1016/j.envexpbot.2020.104333

Carotenuto, G., Volpe, V., Russo, G., Politi, M., Sciascia, I., Almeida-Engler, J. & Genre, A. (2019). Local endoreduplication as a feature of intracellular fungal accommodation in arbuscular mycorrhizas. New Phytologist 223: 430-446. https://doi.org/10.1111/nph.15763 DOI: https://doi.org/10.1111/nph.15763

Chareesri, A., De Deyn, G. B., Sergeeva, L., Polthanee, A. & Kuyper, T. W. (2020). Increased arbuscular mycorrhizal fungal colonization reduces yield loss of rice (Oryza sativa L.) under drought. Mycorrhiza 30: 315-328. https://doi.org/10.1007/s00572-020-00953-z DOI: https://doi.org/10.1007/s00572-020-00953-z

Chandrasekaran, M. (2022). Arbuscular Mycorrhizal Fungi Mediated Enhanced Biomass, Root Morphological Traits and Nutrient Uptake under Drought Stress: A Meta-Analysis. Journal of Fungi 8: 660. https://doi.org/10.3390/jof8070660 DOI: https://doi.org/10.3390/jof8070660

Chen, W., Meng, P., Feng, H., & Wang, Ch. (2020). Effects of Arbuscular Mycorrhizal Fungi on Growth and Physiological Performance of Catalpa bungei C.A.Mey. under Drought Stress. Forests 11: 1117. https://doi.org/10.3390/f11101117 DOI: https://doi.org/10.3390/f11101117

Chen, J., Nolan, T. M., Ye, H., Zhang, M., Tong, H., Xin, P., Chu, J., Chu, C., Li, Z. & Yin, Y. (2017). Arabidopsis WRKY46, WRKY54, and WRKY70 transcription factors are involved in brassinosteroid-regulated plant growth and drought responses. Plant Cell 29: 1425-1439. https://doi.org/10.1105/tpc.17.00364 DOI: https://doi.org/10.1105/tpc.17.00364

de Ollas C. & Dodd, I. C. (2016) Physiological impacts of ABA–JA interactions under water-limitation. Plant Molecular Biology 91: 641-650. https://doi.org/10.1007/s11103-016-0503-6 DOI: https://doi.org/10.1007/s11103-016-0503-6

Dong, T., Park, Y. & Hwang, I. (2015). Abscisic acid: biosynthesis, inactivation, homoeostasis and signalling. Essays Biochem 58: 29-48. https://doi.org/ 10.1042/bse0580029 DOI: https://doi.org/10.1042/bse0580029

Ennajeh, M., Vadel, A. M., Khemira, H., Ben Mimoun, M., Hellali, R. ( 2006). Defense mechanisms against water stress in two olive (Olea europaea L.) cultivars ‘Meski’ and ‘Chemlali’. Journal of Horticultural Science and Biotechnology 81: 99-104. https://doi.org/10.1080/14620316.2006.11512035 DOI: https://doi.org/10.1080/14620316.2006.11512035

Ennajeh, M., Vadel, A. M., & Khemira, H. (2009). Osmoregulation and osmoprotection in the leaf cells of two olive cultivars subjected to severe water stress. Acta Physiologiae Plantarum 31: 711-721. https://doi.org/10.1007/s11738-009-0283-6 DOI: https://doi.org/10.1007/s11738-009-0283-6

Fahad, S., Hussain, S., Saud, S., Hassan, S., Chauhan, B. S., Khan, F., Ihsan, M. Z., Ullah, A., Wu, C, Bajwa A. A., Alharby, H., Amanullah, Nasim, W., Shahzad, B., Tanveer, M. & Huang, J. (2016). Responses of rapid viscoanalyzer profile and other rice grain qualities to exogenously applied plant growth regulators under high day and high night temperatures. PLoS One 11 (7): e0159590. DOI: https://doi.org/10.1371/journal.pone.0159590

Formenti, L. & Rasmann, S. (2019). Mycorrhizal Fungi Enhance Resistance to Herbivores in Tomato Plants with Reduced Jasmonic Acid Production. Agronomy 9: 131. https://doi.org/10.3390/agronomy9030131 DOI: https://doi.org/10.3390/agronomy9030131

Giovannini, L., Palla, M., Agnolucci, M., Avio, L., Sbrana, C., Turrini, A. & Giovannetti, M. (2020). Arbuscular Mycorrhizal Fungi and Associated Microbiota as Plant Biostimulants: Research Strategies for the Selection of the Best Performing Inocula. Agronomy 10: 106. https://doi.org/10.3390/agronomy10010106 DOI: https://doi.org/10.3390/agronomy10010106

Goyal, D., Mishra, S. & Dantu, P. K. (2020). Arbuscular Mycorrhizae Associations and Role in Mitigation of Drought Stress in Plants. In: Yadav, A., Mishra, S., Kour, D., Yadav, N., Kumar, A. (Eds.), Agriculturally Important Fungi for Sustainable Agriculture (81-94). Cham.: Springer. https://doi.org/10.1007/978-3-030-48474-3_3 DOI: https://doi.org/10.1007/978-3-030-48474-3_3

Hasan, M., Liu, X. D., Waseema, M., Guang-Qian, Y., Alabdallah, N. M., Jahan, M. S. & Fang, X. M. (2022). ABA activated SnRK2 kinases: an emerging role in plant growth and physiology. Plant Signaling & Behavior 17: 2071024. https://doi.org/10.1080/15592324.2022.2071024 DOI: https://doi.org/10.1080/15592324.2022.2071024

Haworth, M., Marino, G., Cosentino, S. L., Brunetti, C., De Carlo, A., Avola, G., Riggi, E., Loreto, F. & Centritto, M. (2018). Increased free abscisic acid during drought enhances stomatal sensitivity and modifies stomatal behaviour in fast growing giant reed (Arundo donax L.). Environmental and Experimental Botany 147: 116-124. https://doi.org/10.1016/j.envexpbot.2017.11.002 DOI: https://doi.org/10.1016/j.envexpbot.2017.11.002

Herrera-Medina, M. J., Steinkellner, S., Vierheilig, H., Ocampo Bote J. A. & García Garrido, J. M. (2007). Abscisic acid determines arbuscule development and functionality in tomato arbuscular mycorrhiza. New Phytologist 175: 554-564. https://doi.org/10.1111/j.1469-8137.2007.02107.x DOI: https://doi.org/10.1111/j.1469-8137.2007.02107.x

Hu, L., Wang, Z. & Huang, B. (2013). Effects of Cytokinin and Potassium on Stomatal and Photosynthetic Recovery of Kentucky Bluegrass from Drought Stress. Crop Science 53: 221-231. DOI: https://doi.org/10.2135/cropsci2012.05.0284

Huang, Y., Jiao, Y., Xie, N., Guo, Y., Zhang, F., Xiang, Z., Wang, R., Wang, F., Gao, Q., Tian, L., Li, D., Chen, L. & Liang, M. (2015). OsNCED5, a 9-cis-epoxycarotenoid dioxygenase gene, regulates salt and water stress tolerance and leaf senescence in rice. Plant Science 287: 110188. https://doi.org/10.1016/j.plantsci.2019.110188 DOI: https://doi.org/10.1016/j.plantsci.2019.110188

Jabborova, D., Annapurna, O. K., Paul, S., Kumar, S., Saad, H. A., Desouky, S., Ibrahim, M. F. M. & Elkelish, A. (2021). Beneficial Features of Biochar and Arbuscular Mycorrhiza for Improving Spinach Plant Growth, Root Morphological Traits, Physiological Properties, and Soil Enzymatic Activities. Journal of Fungi 7: 571. https://doi.org/10.3390/jof7070571 DOI: https://doi.org/10.3390/jof7070571

Karunanantham, K., Lakshminarayanan, S. P., Ganesamurthi, A. K., Ramasamy, K. & Rajamony, V. R. (2022). Chapter 10 - Arbuscular mycorrhiza—A health engineer for abiotic stress alleviation. In: R.C. Dubey, Kumar, P. (Eds). Rhizosphere Engineering (171-198). Cambridge: Massachusetts. https://doi.org/10.1016/B978-0-323-89973-4.00019-3 DOI: https://doi.org/10.1016/B978-0-323-89973-4.00019-3

Khabou, W., Gargouri, T., Triki, M., Ben Amar, F. & Kammoun, S. (2014). Arbuscular mycorrhizal fungi (Glomus deserticola) enhance drought tolerance of olive tree (Olea europaea L.). Proceedings of the 5th International Conference on ‘Olive culture, biotechnology and quality of olive tree products’. Ayoub, S., Ajlouni, M. (Eds.), pp. 267-273. Amman, Jordan.

Kokkotos, E., Zotos, A. & Patakas, A. (2020). Evaluation of Water Stress Coefficient Ks in Different Olive Orchards. Agronomy 10: 1594. https://doi.org/10.3390/agronomy10101594 DOI: https://doi.org/10.3390/agronomy10101594

Kour, D., Bakshi, P., Wali, V. K., Sharma, N., Sharma, A. & Iqbal, M. (2018). Alternate bearing in olive – A Review. International Journal of Current Microbiology and Applied Sciences 7: 2281-2297. DOI: https://doi.org/10.20546/ijcmas.2018.709.283

Kuromori, T., Seo, M. & Shinozaki, K. (2018). ABA Transport and Plant Water Stress Responses. Trends in Plant Science 23: 513-522. https://doi.org/10.1016/j.tplants.2018.04.001 DOI: https://doi.org/10.1016/j.tplants.2018.04.001

Lee, Y., Do, V. G., Kim, S., Kweon, H. & McGhie, T. K. (2021). Cold stress triggers premature fruit abscission through ABA-dependent signal transduction in early developing apple. PLoS ONE 16: e0249975. https://doi.org/10.1371/journal.pone.0249975 DOI: https://doi.org/10.1371/journal.pone.0249975

Liang, S. M., Jiang, D. J., Xie, M. M., Zou, Y. N., Wu, Q. S., & Ku?a, K. (2021). Physiological responses of mycorrhizal symbiosis to drought stress in white clover. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 49: 12209. https://doi.org/10.15835/nbha49112209 DOI: https://doi.org/10.15835/nbha49112209

Liao, D., Wang, S., Cui, M., Liu, J., Chen, A. & Xu, G. (2018). Phytohormones Regulate the Development of Arbuscular Mycorrhizal Symbiosis. International Journal of Molecular Science 19: 3146. https://doi.org/10.3390/ijms19103146 DOI: https://doi.org/10.3390/ijms19103146

Liu, J., He, H., Vitali, M., Visentin, I., Charnikhova, T., Haider, I., Schubert, A., Ruyter-Spira, C., Bouwmeester, H. J., Lovisolo, C. & Cardinale, C. (2015). Osmotic stress represses strigolactone biosynthesis in Lotus japonicus roots: exploring the interaction between strigolactones and ABA under abiotic stress. Planta 241: 1435-1451. https://doi.org/10.1007/s00425-015-2266-8 DOI: https://doi.org/10.1007/s00425-015-2266-8

Liu, J., Guo, C., Chen, Z. L., He, J. D. & Zou, Y. N. (2017). Mycorrhizal inoculation modulates root morphology and root phytohormone responses in trifoliate orange under drought stress. Emirates Journal of Food and Agriculture 28: 251-256. https://doi.org/10.9755/ejfa.2015-11-1044 DOI: https://doi.org/10.9755/ejfa.2015-11-1044

Liu, C. & Zhang, T. (2017). Expansion and stress responses of the AP2/EREBP superfamily in cotton. BMC Genomics 18: 118. DOI: https://doi.org/10.1186/s12864-017-3517-9

Lo, S., Ho, T. D., Liu, Y. Jiang, M. J., Hsieh, K, T., Chen,, K. T., Yu, L. C., Lee, M. H., Chen, C. Y., Huang, T. P., Kojima, M., Sakakibara, H., Chen, L. J. & Yu, S. M. (2017). Ectopic expression of specific GA2 oxidase mutants promotes yield and stress tolerance in rice. Plant Biotechnology Journal 15: 850-864. DOI: https://doi.org/10.1111/pbi.12681

Ma, Y., Cao, J., He, J., Chen, Q., Li, X. & Yang, Y. (2018). Molecular Mechanism for the Regulation of ABA Homeostasis During Plant Development and Stress Responses. International Journal of Molecular Sciences 19: 3643. https://doi.org/10.3390/ijms19113643 DOI: https://doi.org/10.3390/ijms19113643

Martín-Rodríguez, J. A., Huertas, R., Ho-Plágaro, T., Ocampo, J. A., Ture?ková, V., Tarkowská, D., Ludwig-Müller, J. & García-Garrido, J. M. (2016). Gibberellin–Abscisic Acid Balances during Arbuscular Mycorrhiza Formation in Tomato. Frontiers in Plant Science 7, Article 1273. https://doi.org/10.3389/fpls.2016.01273 DOI: https://doi.org/10.3389/fpls.2016.01273

Merwad, M. A., Shahin, M. F. M. & Haggag, L. F. (2015). Optimizing growth of ‘’Picual’’ olive seedlings by using organic and biofertilizers as soil application under greenhouse condition. International Journal of ChemTech Research 8: 36-42.

Munemasa, S., Hirao, Y., Tanami, K., Mimata, Y., Nakamura, Y. & Murata, Y. (2019). Ethylene Inhibits Methyl Jasmonate-Induced Stomatal Closure by Modulating Guard Cell Slow-Type Anion Channel Activity via the OPEN STOMATA 1/SnRK2.6 Kinase-Independent Pathway in Arabidopsis. Plant and Cell Physiology 60: 2263-2271. https://doi.org/10.1093/pcp/pcz121 DOI: https://doi.org/10.1093/pcp/pcz121

Ouledali, S., Ennajeh, M., Zrig, A., Gianinazzi, S. & Khemira, H. (2018). Estimating the contribution of arbuscular mycorrhizal fungi to drought tolerance of potted olive trees (Olea europaea). Acta Physiologiae Plantarum 40: 81. DOI: https://doi.org/10.1007/s11738-018-2656-1

Ouledali, S., Ennajeh, M., Ferrandino, A., Khemira, H., Schubert, A. & Secchi, F. (2019). Influence of arbuscular mycorrhizal fungi inoculation on the control of stomata functioning by abscisic acid (ABA) in drought-stressed olive plants. South African Journal of Botany 121: 152-158. https://doi.org/10.1016/j.sajb.2018.10.024 DOI: https://doi.org/10.1016/j.sajb.2018.10.024

Parwez, R., Aftab, T., Gill, S. S. & Naeem, M. (2022). Abscisic acid signaling and crosstalk with phytohormones in regulation of environmental stress responses. Environmental and Experimental Botany 199: 104885. https://doi.org/10.1016/j.envexpbot.2022.104885 DOI: https://doi.org/10.1016/j.envexpbot.2022.104885

Peláez,D. V., Blazquez, F. R. & Andrioli, R. J. (2021). Twenty-five Years of Fire Research in the Temperate Semi-arid Rangelands of Central Argentina: A Synthesis. Russian Journal of Ecology 52: 49-58. https://doi.org/10.1134/S1067413621010112 DOI: https://doi.org/10.1134/S1067413621010112

Perera, F. & Nadeau, K. (2022). Climate Change, Fossil-Fuel Pollution, and Children’s Health. New England Journal of Medicine 386: 2303-2314. DOI: https://doi.org/10.1056/NEJMra2117706

Postiglione, A. E. & Muday, G. K. (2020). The Role of ROS Homeostasis in ABA-Induced Guard Cell Signaling. Frontiers in Plant Science 11: 968. https://doi.org/10.3389/fpls.2020.00968 DOI: https://doi.org/10.3389/fpls.2020.00968

Qi, W., Feng, L. Yang, H. & Liu, J. (2022). Increasing Concurrent Drought Probability in Global Main Crop Production Countries. Geophysical Research Letters 49: e2021GL097060. https://doi.org/10.1029/2021GL097060 DOI: https://doi.org/10.1029/2021GL097060

Rapparini, F. & Peñuelas, J. (2014). Mycorrhizal fungi to alleviate drought stress on plant growth. In: M. Miransari (Ed.), Use of microbes for the alleviation of soil stresses (pp. 1-42). New York: Springer Science + Business Media. vol. 1. https://doi.org/10.1007/978-1-4614-9466--9_2 DOI: https://doi.org/10.1007/978-1-4614-9466-9_2

Ren, A. T., Zhu, Y., Chen, Y. L., Ren, H. X., Li, J. I., Abbott, L. K. & Xiong, Y. C. (2019). Arbuscular mycorrhizal fungus alters root-sourced signal (abscisic acid) for better drought acclimation in Zea mays L. seedlings. Environmental and Experimental Botany 167: 103824. https://doi.org/10.1016/j.envexpbot.2019.103824 DOI: https://doi.org/10.1016/j.envexpbot.2019.103824

Rowe, J. H., Topping, J. F., Liu, J. & Lindsey, K. (2016). Abscisic acid regulates root growth under osmotic stress conditions via an interacting hormonal network with cytokinin, ethylene and auxin. New Phytologist 211: 225-239. https://doi.org/10.1111/nph.13882 DOI: https://doi.org/10.1111/nph.13882

Ruiz-Lozano, J. M., Alguacil, M. M., Barzana, G., Vernieri, P. & Aroca, R. (2009). Exogenous ABA accentuates the differences in root hydrolic properties between mycorrhizal and non-mycorrhizal maize plants through regulation de PIP aquaporins. Plant Molecular Biology 70: 565-579. DOI: https://doi.org/10.1007/s11103-009-9492-z

Ruiz-Lozano, J. M., Aroca, R., Zamarreño, A. M., Molina, S., Andreo-Jiménez, V., Porcel, R., García-Mina, J. M., Ruyter-Spira, C. & López-Ráez, J. A. (2016). Arbuscular mycorrhizal symbiosis induces strigolactone biosynthesis under drought and improves drought tolerance in lettuce and tomato. Plant Cell and Environment 39: 441-452. DOI: https://doi.org/10.1111/pce.12631

Sah, S. K., Reddy, K. R. & Li, J. (2016). Abscisic acid and abiotic stress tolerance in crop plants. Frontiers in Plant Science 7: 571. DOI: https://doi.org/10.3389/fpls.2016.00571

Schmidt, C. S., Mrnka, L., Frantík, T., Motyka, V., Dobrev, P. I. & Vosátka, M. (2017). Combined effects of fungal inoculants and the cytokinin-like growth regulator thidiazuron on growth, phytohormone contents and endophytic root fungi in Miscanthus × giganteus. Plant Physiology and Biochemistry 120: 120-131. DOI: https://doi.org/10.1016/j.plaphy.2017.09.016

Sepahvand, T., Etemad, V., Matinizadeh, M. & Shirvany, A. (2021). Symbiosis of AMF with growth modulation and antioxidant capacity of Caucasian Hackberry (Celtis caucasica L.) seedlings under drought stress. Central Asian Journal of Environmental Science and Technology Innovation 1: 20-35.

Shen, J., Lv, B., Luo, L., He, J., Mao, Ch., Xi, D. & Ming, F. (2017). The NAC-type transcription factor OsNAC2 regulates ABA-dependent genes and abiotic stress tolerance in rice. Scientific Reports 7: 40641. https://doi.org/10.1038/srep40641 DOI: https://doi.org/10.1038/srep40641

Shi, S., Li, S., Asim, M., Mao, J., Xu, D., Ullah, Z., Liu, G., Wang, Q. & Liu, H. (2018). The Arabidopsis Calcium-Dependent Protein Kinases (CDPKs) and Their Roles in Plant Growth Regulation and Abiotic Stress Responses. International Journal of Molecular Science 19: 1900. https://doi.org/10.3390/ijms19071900 DOI: https://doi.org/10.3390/ijms19071900

Silva, F. B. (2020). Sinais elétricos em microtomateiros mutantes em ABA: aspectos eletrofisiológicos e metabólicos sob diferentes condições hídricas. (Tesis Doctoral), Escola Superior de Agricultura Luiz de Queiroz, Brasil.

Silvani, V. A. (2011). Aislamiento y caracterización in vitro de hongos micorrícicos arbusculares de diferentes sitios en Argentina. PhD Thesis, Facultad de Ciencias Exactas y Naturales, University of Buenos Aires.

Sisco, M. R., Bosetti, V. & Weber, E. U. (2017). When do extreme weather events generate attention to climate change?. Climatic Change 143: 227-241. https://doi.org/10.1007/s10584-017-1984-2 DOI: https://doi.org/10.1007/s10584-017-1984-2

Soma, F., Takahashi, F., Yamaguchi-Shinozaki, K. & Shinozaki, K. (2021). Cellular Phosphorylation Signaling and Gene Expression in Drought Stress Responses: ABA-Dependent and ABA-Independent Regulatory Systems. Plants 10: 756. https://doi.org/10.3390/plants10040756 DOI: https://doi.org/10.3390/plants10040756

Soltys-Kalina, D., Plich, J., Strzelczyk-?yta, D., ?liwka, J. & Marczewski, W. (2016). The effect of drought stress on the leaf relative water content and tuber yield of a half-sib family of ‘Katahdin’-derived potato cultivars. Breeding Science 66: 328-331. https://doi.org/10.1270/jsbbs.66.328 DOI: https://doi.org/10.1270/jsbbs.66.328

Stauder, R., Welsch, R., Camagna, M., Kohlen, W., Balcke, G. U., Tissier, A., Walter, M. H. (2018). Strigolactone Levels in Dicot Roots Are Determined by an Ancestral Symbiosis-Regulated Clade of the PHYTOENE SYNTHASE Gene Family. Frontiers in Plant Science 9, Article 255, 18 pages. https://doi.org/10.3389/fpls.2018.00255 DOI: https://doi.org/10.3389/fpls.2018.00255

Torres, N., Goicoechea, N., Zamarreño, A. M & Antolín, M. C. (2018). Mycorrhizal symbiosis affects ABA metabolism during berry ripening in Vitis vinifera L. cv. Tempranillo grown under climate change scenarios. Plant Science 274: 383-393. DOI: https://doi.org/10.1016/j.plantsci.2018.06.009

Ullah, A., Sun, H., Yang, X. & Zhang, X. (2017). Drought coping strategies in cotton: increased crop per drop. Plant Biotechnology Journal 15: 271-284. DOI: https://doi.org/10.1111/pbi.12688

United Nations (2017). Department of economic and social affairs. https://www.un.org/development/desa/en/news/population/worldpopulation-prospects-2017.html

Verma, V., Ravindran, P. & Kumar, P. P. (2016). Plant hormone-mediated regulation of stress responses. BMC Plant Biology 16: 86. DOI: https://doi.org/10.1186/s12870-016-0771-y

Visentin, I., Vitali, M., Ferrero, M., Zhang, Y., Ruyter-Spira, C., Novak, O., Strmad, M., Lovisolo, C., Schubert, A., Cardinale, F. (2016). Low levels of strigolactones in roots as a component of the systemic signal of drought stress in tomato. New Phytologist 212: 954-963. DOI: https://doi.org/10.1111/nph.14190

Visentin, I., Pagliarani, Ch., Deva, E., Caracci, A., Ture?ková, V., Novák, O., Lovisolo, C., Schubert, A. & Cardinale, F. (2020). A novel strigolactone-miR156 module controls stomatal behaviour during drought recovery. Plant, Cell & Environment 43: 1613-1624. https://doi.org/10.1111/pce.13758 DOI: https://doi.org/10.1111/pce.13758

Wang, J., Li, Ch., Li, L., Gao, L., Hu, G., Zhang, Y., Reynolds, M. P., Zhang, X., Jia, J., Mao, X. & Jing, R. (2023). DIW1 encoding a clade I PP2C phosphatase negatively regulates drought tolerance by dephosphorylating TaSnRK1.1 in wheat. Journal of Integrative Plant Biology 00: 1-19. https://doi.org/10.1111/jipb.13504 DOI: https://doi.org/10.1111/jipb.13504

Wang, P., Zhao, Y., Li, Z., Hsu, Ch., Liu, X., Fu, L., Hou, Y.J., Du, Y., Xie, S., Zhang, Ch., Gao, J., Cao, M., Huang, X., Zhu, Y., Tang, K., Wang, X., Tao, W. A., Xiong, Y. & Zhu, J. K. (2018). Reciprocal Regulation of the TOR Kinase and ABA Receptor Balances Plant Growth and Stress Response. Molecular Cell 69: 100-112.e6. https://doi.org/10.1016/j.molcel.2017.12.002 DOI: https://doi.org/10.1016/j.molcel.2017.12.002

Wang, J., Song, L., Gong, X., Xu, J. & Li, M. (2020). Functions of Jasmonic Acid in Plant Regulation and Response to Abiotic Stress. International Journal of Molecular Science 21: 1446. https://doi.org/10.3390/ijms21041446 DOI: https://doi.org/10.3390/ijms21041446

Xu, L., Li, T., Wu, Z., Feng, H., Yu, M., Zhang, X. & Chen, B. (2018). Arbuscular mycorrhiza enhances drought tolerance of tomato plants by regulating the 14-3-3 genes in the ABA signaling pathway. Applied Soil Ecology 125: 213-221. https://doi.org/10.1016/j.apsoil.2018.01.012 DOI: https://doi.org/10.1016/j.apsoil.2018.01.012

Yang, G., Yu, Z., Gao, L. & Zheng, C. (2019). SnRK2s at the Crossroads of Growth and Stress Responses. Trends in Plant Science 24: 672-676. https://doi.org/10.1016/j.tplants.2019.05.010 DOI: https://doi.org/10.1016/j.tplants.2019.05.010

Zhang L., Jiang C., Zhou J., Declerck S., Tian C., Feng G. (2016). Increasing phosphorus concentration in the extraradical hyphae of Rhizophagus irregularis DAOM 197198 leads to a concomitant increase in metal minerals. Mycorrhiza 26 (8): 909-918. DOI: https://doi.org/10.1007/s00572-016-0722-3

Zwanenburg, B., Pospíšil, T. & ?avar Zeljkovi?, S. (2016). Strigolactones: new plant hormones in action. Planta 243: 1311-1326. https://doi.org/10.1007/s00425-015-2455-5 DOI: https://doi.org/10.1007/s00425-015-2455-5

Ácido abscísico, y tolerancia al estrés hídrico inducido

Descargas

Publicado

2023-07-31

Cómo citar

Busso, M. A. . (2023). Ácido abscísico, y tolerancia al estrés hídrico inducido por ácido abscísico en plantas herbáceas y de olivo (Olea europaea) micorrizadas. Lilloa, 60(2), 105–123. https://doi.org/10.30550/j.lil/1689
صندلی اداری سرور مجازی ایران Decentralized Exchange

Número

Sección

Artículos originales
فروشگاه اینترنتی صندلی اداری جوراب افزایش قد ژل افزایش قد خرید vpn خرید vpn سرور مجازی بایننس