Impacto del fuego sobre la vegetación no vascular del suelo: un caso de estudio en los bosques de Polylepis australis (Rosaceae) del centro de Argentina

Autores/as

  • Agostina Perazzo Instituto de Investigaciones Biológicas y Tecnológicas (CONICET – Universidad Nacional de Córdoba) y Centro de Ecología y Recursos Naturales Renovables (FCEFyN – UNC)
  • Juan M. Rodriguez nstituto de Investigaciones Biológicas y Tecnológicas (CONICET – Universidad Nacional de Córdoba) y Centro de Ecología y Recursos Naturales Renovables (FCEFyN – UNC)

DOI:

https://doi.org/10.30550/j.lil/2019.56.2/6

Palabras clave:

Briófitos, incendios, líquenes, tabaquillo

Resumen

La vegetación no vascular está formada por líquenes, musgos, algas y cianobacterias tanto epífitas, como creciendo sobre el suelo. El objetivo de este trabajo fue estimar los cambios producidos por el fuego en la cobertura de briófitos y líquenes del suelo en parcelas de bosques de Polylepis australis (tabaquillo) en el Parque Nacional Quebrada del Condorito (PNQC) en el centro de Argentina. En un sector del Área Protegida incendiado en setiembre de 2015 se seleccionaron 40 parcelas de 30 x 30 m, 20 en bosques no quemados y 20 en bosques quemados. Quince meses después del siniestro, en cada parcela se seleccionaron al azar cinco cuadrados de 2 x 2 m para estimar cobertura en suelo diferenciando líquenes y briófitos. Además, se registraron la cobertura de plantas vasculares, suelo desnudo y mantillo. Como variables explicativas se midió la orientación y pendiente en cada cuadrado y en cada parcela. Además, se estimó la cobertura de bosque previo al incendio y la severidad del fuego. Los resultados muestran una muy baja superficie ocupada por líquenes y briófitos en el suelo afectado por el fuego a pesar de la recuperación de la vegetación vascular. La cobertura de líquenes y briófitos varían en función de características del micrositio tanto en parcelas quemadas como no quemadas. Se discute el posible impacto de la pérdida de esta cobertura en el ecosistema de bosque de Polylepis.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Argañaraz, J. P., Gavier Pizarro, G., Zak, M. y Bellis, L. M. (2015). Fire regime, climate, and vegetation in the Sierras de Córdoba, Argentina. Fire Ecology 11 (1): 55-73.

Argibay, D. D. y Renison, D. (2018). Efecto del fuego y la ganadería en bosques de Polylepis australis (Rosaceae) a lo largo de un gradiente altitudinal en las montañas del centro de la Argentina. Bosque 39 (1): 145-150. DOI: 10.4067/S0717-92002018000100014

Armesto, J. J. y Contreras, L. C. (1981). Saxicolous Lichen Communities: Non equilibrium Systems? The American Naturalist 118 (4): 597-604.

Armstrong, R. A. (2002). The effect of rock surface aspect on growth, size structure and competition in the lichen Rhizocarpon geographicum. Environmental and Experimental Botany 48 (2): 187-194.

Belnap, J. y Lange, O. L. (2001). Structure and functioning of biological soil crusts: a synthesis. En: J. Belnap, O. J. Lange, (Eds.), Biological Soil Crusts: Structure, Function, and Management. (pp. 471-479). Ecological Studies (Analysis and Synthesis), vol 150. Springer, Berlin, Heidelberg.

Cabido, M. (1985). Las comunidades vegetales de la Pampa de Achala, Sierras de Córdoba, Argentina. Documents Phytosociologiques 9: 431-443.

Cabido, M., Funes, G., Pucheta, E., Vendramini, F. y Díaz, S. (1998). A chronological analysis of the mountains from Central Argentina. Is all what we call Sierra Chaco really Chaco? Contribution to the study of the flora and vegetation of the Chaco. XII. Candollea 53: 321-331.

Cabrera, A. L. (1976). Enciclopedia argentina de agricultura y jardinería. Fascículo 1, Regiones fitogeográficas argentinas. Editorial Acme S.A.C.I., Buenos Aires, Argentina.

Calabrese, G. M. y Rovere, A. E. 2013. El rol de los musgos en la germinación de especies leñosas: Implicancias de la heterogeneidad de micro-sitios para la restauración. Revista de la Asociación Argentina de Ecología de Paisajes 4 (2): 130-136.

Cingolani, A. M., Renison, D., Zak, M. R. y Cabido, M. (2004). Mapping vegetation in a heterogeneous mountain rangeland using Landsat data: an alternative method to define and classify land-cover units. Remote Sensing and Environment 92 (1): 84-97.

Cingolani, A. M., Vaieretti, M. V., Gurvich, D. E., Giorgis, M. E. y Cabido, M. (2010). Predicting alpha, beta and gamma plant diversity from physiognomic and physical indicators as a tool for ecosystem monitoring. Biological Conservation 143 (11): 2570-2577.

Cingolani, A. M., Vaieretti, M. V., Giorgis, M. A., La Torre, N., Whitworth-Hulse J. I. y Renison, D. (2013). Can livestock and fires convert the sub-tropical mountain rangelands of central Argentina into a rocky desert?. Rangeland Journal 35: 285-297.

Collins, B. M, Kelly, M., van Wagtendonk, J. M. y Stephens, S. L. (2007). Spatial patterns of large natural fires in Sierra Nevada wilderness areas. Landscape Ecology 22: 545-557.

Di Rienzo, J. A., Macchiavelli, R. A. y Casanoves, F. (2017). Modelos lineales generalizados mixtos: aplicaciones en InfoStat- 1a edición especial - Córdoba.

Di Rienzo, J. A., Casanoves, F., Balzarini, M. G., Gonzalez, L., Tablada, M. y Robledo, C. W. (2017). InfoStat versión 2017. Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina. URL http://www.infostat.com.ar

Diaz-Delgado, R., Lloret, F., Pons, X. y Terradas, J. (2002). Satellite Evidence of Decreasing Resilience in Mediterranean Plant Communities after Recurrent Wildfires. Ecology 83 (8): 2293-2303.

Elbert, W., Weber, B., Burrows, S., Steinkamp, J., Büdel, B., Meinrat, O. A. y Pösch, U. . (2012). Contribution of cryptogamic covers to the global cycles of carbon and nitrogen. Nature Geoscience 5: 459-462.

Eldridge, D. J. y Bradstock, R. A. (1994). The effect of time since fire on the cover and composition of cryptogamic soil crusts on Eaucalyptus shrubland soil. Cunninghamia 3: 521-527.

Giorgis, M. A., Cingolani, A. M. y Cabido, M. (2013). El efecto del fuego y las características topográficas sobre la vegetación y las propiedades del suelo en la zona de transición entre bosques y pastizales de las sierras de Córdoba, Argentina. Boletín de la Sociedad Argentina de Botánica 48 (3-4): 493-513.

Google Earth Pro 2015®

Harper, K. T. y Belnap, J. (2001). The influence of biological soil crusts on mineral uptake by associated vascular plants. Journal of Arid Environments 47 (3): 347-357.

Hawkes, C. V. (2003). Microorganismos del suelo, plantas en peligro de extinción y la conservación del Matorral de Florida. Ecosistemas 12 (2): 1-6.

Johansen, J. R. y St. Clair, L. L. (1986). Cryptogamic soil crusts: recovery from grazing near Camp Floyd State Park, Utah, USA. Great Basin Naturalist 46 (4): 632-640.

Johansen, J. R. (1993). Cryptogamic crusts of semiarid and arid lands of North America. Journal of Phycology 29 (2): 140-147.

Johansen, J. R. (2001). Impacts of Fire on Biological Soil Crusts. En: J. Belnap, O. J. Lange, (Eds.), Biological Soil Crusts: Structure, Function, and Management. (pp. 285-387). Ecological Studies (Analysis and Synthesis), vol 150. Springer, Berlin, Heidelberg.

John, E. y Dale, M. R. T. (1990). Environmental correlates of species distributions in a saxicolous lichen community. Journal of Vegetation Science 1 (3): 385-392.

Key, C. H. y Benson, N. C. (2006). Landscape Assessment- Sampling and Analysis Methods. En: D. C. Lutes (Ed.), FIREMON: Fire Effects Monitoring and Inventory System. United States Department of Agriculture Forest Service. Fort Collins, USA.

Kremsater, L. y Bunnell, F. L. (1999). Edge effects: Theory, evidence and implications to management of western North American forests. En: J. Rochelle, L. Lehmann, J. L.

Kulakowski, D. y Veblen, T. T. (2002). Influences of fire history and topography on the pattern of a severe wind blowdown in a Colorado Subalpine Forest. Journal of Ecology. 90: 806-819.

Longo, S., Nouhra, E., Goto, B., Berbara, R. y Urcelay, C. (2014) Effects of fire on arbuscular mycorrhizal fungi in the Mountain Chaco Forest. Forest Ecology and Management 315: 86-94.

Peter, G., Leder, C. V. y Funk, F. A. (2016). Effects of biological soil crust and water availability on seedlings of three perennial Patagonian species. Journal of Arid Environments 125: 122-126.

Pucheta, E., Cabido, M., Díaz, S. y Funes, G. (1998). Floristic composition, biomass, and aboveground net plant production in grazed and protected sites in a mountain grassland of central Argentina. Acta Oecologica 19 (2): 97-105.

Renison, D., Cingolani, A. M., Suarez, R. (2002). Efectos del fuego sobre un bosquecillo de Polylepis australis (Rosaceae) en las montañas de Córdoba, Argentina. Revista Chilena de Historia Natural 75 (4):719–727.

Renison, D., Hensen, I., Suárez, R. y Cingolani, A. M. (2006). Cover and growth habit of Polylepis woodlands and shrublands in the mountains of central Argentina: human or environmental influence? Journal of Biogeography 33 (5): 876-887.

Renison, D. (2013). Can livestock and fires convert the sub-tropical mountain rangelands of central Argentina into a rocky desert? The Rangeland Journal 35: 285-297.

Renison, D., Cuyckens Griet, A. E., Pacheco, S., Guzmán, G., Grau, H., Marcora, P., Robledo, G., Cingolani, A. M., Dominguez, J., Landi, M., Bellis, L. y Hensen, I. (2013). Distribución y estado de conservación de las poblaciones de árboles y arbustos del género Polylepis (Rosaceae) en las montañas de Argentina. Ecología Austral 23 (1): 27-36.

Renison, D., Chartier, M. P, Menghi, M., Marcora, P., Torres, R.C., Giorgis, M., Hensen I., Cingolani, A. M. (2015). Spatial variation in tree demography associated to domestic herbivores and topography: insights from a seeding and planting experiment. Forest ecology and management 335: 139 146.

Rodriguez, J. M., Estrabou, C., Fenoglio, R., Robbiati, F., Salas, M. C. y Quiroga, G. (2009). Recuperación post-fuego de la comunidad de líquenes epífitos en la provincia de Córdoba, Argentina. Acta Botánica Brasilica 23 (3): 854-859.

Rodriguez, J. M., Estrabou, C., Truong, C. y Clerc, P. (2011). The saxicolous species of the genus Usnea subgenus Usnea (Parmeliaceae) in Argentina and Uruguay. The Bryologist 114 (3): 504-525.

Rodriguez, J. M., Hernandez, J. M., Filippini, E., Cañas, M. y Estrabou, C. (2016). Nuevas citas de macrolíquenes para Argentina y ampliaciones de distribución en el centro del país. Boletín de la Sociedad Argentina de Botánica 51 (3): 405-417.

Rodriguez, J. M., Renison, D., Filippini, E. y Estrabou, C. (2017). Climate change in the mountains: insights from a study of saxicolous lichen communities in relation to altitude and microsite. Biodiversity and Conservation 26: 1199-1215. DOI 10.1007/s10531-017-1293-0

Root, H. T., Brinda, J. C. y Kyle Dodson, E. (2017). Recovery of biological soil crust richness and cover 12-16 years after wildfires in Idaho, USA. Biogeosciences 14: 3957-3969.

Torres, R. C., Giorgis, M. A., Trillo, C., Volkmann, L., Demaio, P., Heredia, J. y Renison, D. (2014). Post-fire recovery occurs overwhelmingly by resprouting in the Chaco Serrano forest of Central Argentina. Austral Ecology 39 (3): 346-354.

Verzino, G., Joseau, J., Dorado, M., Gellert, E., Rodríguez Reartes, S. y Nóbile, R. (2005). Impacto de los incendios sobre la diversidad vegetal, Sierras de Córdoba, Argentina. Ecología Aplicada 4 (1-2): 25-34.

Wisniewski, (Eds.), Forest fragmentation: wildlife and management implications, (pp. 117-153). Brill, Leiden, Germany.

Descargas

Publicado

2019-12-07

Cómo citar

Perazzo, A., & Rodriguez, J. M. (2019). Impacto del fuego sobre la vegetación no vascular del suelo: un caso de estudio en los bosques de Polylepis australis (Rosaceae) del centro de Argentina. Lilloa, 56(2), 67–80. https://doi.org/10.30550/j.lil/2019.56.2/6
صندلی اداری سرور مجازی ایران Decentralized Exchange

Número

Sección

Artículos originales
فروشگاه اینترنتی صندلی اداری جوراب افزایش قد ژل افزایش قد خرید vpn خرید vpn سرور مجازی بایننس