Caracterización de la semilla y la plántula de Sinapis alba (Brassicaceae) y germinación en condiciones de estrés hídrico y salino
DOI:

Palavras-chave:
Cubierta seminal, imbibición, mostaza blanca, mucílago, salinidad, sequíaResumo
Sinapis alba L. “mostaza blanca” (Brassicaceae) se destaca como aromática, cultivada con fines comerciales por sus numerosos usos. Delfina INTA es el primer cultivar argentino de S. alba inscripto. Los objetivos fueron caracterizar la semilla, la plántula y la germinación bajo estrés hídrico y salino del cv. Delfina INTA. Los análisis morfo-anatómicos se realizaron mediante técnicas convencionales de microscopía estereoscópica, óptica, confocal y electrónica de barrido. Se realizaron ensayos de germinación por 21 días. Para simular estrés hídrico el osmolito fue PEG 6000 y NaCl para el salino, ambos con potenciales hídricos equivalentes a -0,4; -0,6; -0,8; -1,0 y -1,2 MPa. Se determinó el porcentaje final de germinación (PFG), velocidad de germinación (Vg) y se caracterizó la plántula. La semilla de forma esférica (2 mm) y color 10 YR 7/6 presentó un patrón de ornamentación reticulado irregular y microgrietas alrededor del hilo y micrópilo. El episperma mostró epidermis con mucílago, subepidermis, capa empalizada y capa de aleurona. El ingreso inicial de agua se registró en la región hilar y micropilar. La germinación epígea desarrolló una plántula con raíz principal y laterales, hipocótilo con tricomas simples y cotiledones reniformes, verdes con máculas violáceas en cara abaxial. En control, el PFG fue 97,22% y la Vg, 70,97%/día. A igualdad de potenciales, la disminución en el PFG fue mayor en salinidad respecto a sequía a -0,4; -0,6; -0,8 y -1,0 MPa (24,91% vs 1,51%; 38,28% vs 19,76%; 53,71% vs 33,55% y 76,26% vs 56,80%, respectivamente); y fue menor en tratamientos a -1,2 MPa (84,57% vs 89,71%). La Vg fue mayor en salinidad respecto a sequía. La información generada contribuye a la descripción de S. alba cv. Delfina INTA y sería útil para evaluar la posibilidad de su cultivo en ambientes con estrés hídrico o salino; y para programas de mejoramiento.
Downloads
Referências
Arambarri, A. M. (2018). Diásporas y semillas. Facultad de Ciencias Agrarias y Forestales. Universidad Nacional de La Plata. https://sedici.unlp.edu.ar/handle/10915/68659
Arias, C., Serrat, X., Moysset, L., Perissé, P. y Nogués, S. (2018). Morpho-Physiological Responses of Alamo Switchgrass During Germination and Early Seedling Stage Under Salinity or Water Stress Conditions. Bioenergy Research 11 (3): 677-688. https://doi.org/10.1007/s12155-018-9930-3
Atta, K., Mondal, S., Gorai, S., Singh, A. P., Kumari, A., Ghosh, T., Roy, A., Hembram, S., Gaikwad, D. J., Mondal, S., Bhattacharya, S., Jha, U. C. y Jespersen, D. (2023). Impacts of salinity stress on crop plants: improving salt tolerance through genetic and molecular dissection. Frontiers in Plant Science 14: 1241736. https://doi.org/10.3389/fpls.2023.1241736
Auger, B., Marnet, N., Gautier, V., Maia-Grondard, A., Leprince, F., Renard, M., Guyot, S., Nesi, N. y Routaboul, J. M. (2010). A detailed survey of seed coat flavonoids in developing seeds of Brassica napus L. Journal of Agricultural and Food Chemistry 58 (10): 6246-6256. https://doi.org/10.1021/jf903619v
Bartels, D. y Sunkar, R. (2005). Drought and salt tolerance in plants. Critical Reviews in Plant Sciences 24 (1): 23-58. https://doi.org/10.1080/07352680590910410
Baskin, C. C. y Baskin, J. M. (2014). Germination Ecology of Seeds with Nondeep Physiological Dormancy. En: C. C. Baskin, J. M. Baskin (Eds.), Seeds (2° ed., pp. 79-117). Academic Press: Elsevier. https://doi.org/10.1016/b978-0-12-416677-6.00004-4
Bell, K. (2000). Visual identification of small oilseeds and weed seed contaminants. Grain Biology Bulletin 3: 1-34. https://publications.gc.ca/collections/collection_2016/ccg-cgc/A93-40-2000-eng.pdf
Bengoechea, G. y Gomez Campo, C. (1975). Algunos caracteres de la semilla en la tribu Brassiceae. Anales del Instituto de Botánica Cavanliles 32 (2): 793-841.
Bewley, J. D. y Black, M. (1994). Seeds: Physiology of Development and Germination (2° ed.). Springer Science: Business Media. https://doi.org/10.1007/978-1-4899-1002-8
Bewley, J. D., Bradford, K. J., Hilhorst, H. W. M. y Nonogaki, H. (2013). Seeds: Physiology of development, germination and dormancy (3° ed.). Springer Science: Business Media. https://doi.org/10.1007/978-1-4614-4693-4_3
Boelcke, O. y Romanczuk, M. C., (1984). Cruciferae. En: M. N. Correa (Ed.), Flora Patagonica (pp. 373-544). Colección Científica del INTA.
Bojovi?, B., Delic, G., Topuzovic, M. y Stankovic, M. (2010). Efects of NaCl on seed germination in some species from families Brassicaceae and Solanaceae. Kragujevac Journal Science 32: 83-87.
Bradford, K. y Still, D. (2004). Application of hydrotime analysis in seed testing. Seed Technology 26 (1): 75-85. https://www.jstor.org/stable/23433495
Castillo-Lorenzo, E., Finch-Savage, W. E., Seal, C. E. y Pritchard, H. W. (2019). Adaptive significance of functional germination traits in crop wild relatives of Brassica. Agricultural and Forest Meteorology 264: 343-350. https://doi.org/10.1016/j.agrformet.2018.10.014
Cavallaro, V., Barbera, A. C., Maucieri, C., Gimma, G., Scalisi, C. y Patanè, C. (2016). Evaluation of variability to drought and saline stress through the germination of different ecotypes of carob (Ceratonia siliqua L.) using a hydrotime model. Ecological Engineering 95: 557-566. https://doi.org/10.1016/j.ecoleng.2016.06.040
Dawadi, D., Seepaul, R., George, S., Groot, J. y Wright, D. (2019). Drought tolerance classification of common oilseed species using seed germination assay. Journal of Oilseed Brassica 10 (2): 97-105. https://epubs.icar.org.in/index.php/JOB/article/view/158550
De Vogel, E. F. (1980). Seedling of Dicotyledons: structure, development, types. Centre for Agricultural Publishing and Documentation (PUDOC).
Debeaujon, I., Léon-Kloosterziel, K. M. y Koornneef, M. (2002). Influence of the Testa on Seed Dormancy, Germination, and Longevity in Arabidopsis. Plant Physiology 122 (2): 403-414. https://doi.org/10.1104/pp.122.2.403
Di Rienzo, J. A., Casanoves, F., Balzarini, M. G., Gonzalez, L., Tablada, M. y Robledo, C. W. (2020). Infostat versión 2020 (N.o 2020). Centro de Transferencia InfoStat, FCA, Universidad Nacional de Córdoba, Argentina. http://www.infostat.com.ar
Diaz, M. S. y Molinelli, M. L. (2018). Caracterización del fruto y la semilla de Ruprechtia apetala (Polygonaceae) en relación con la entrada de agua y la germinación. Bondplandia 27 (1): 5-22. https://dx.doi.org/10.30972/bon.2712983
Dimitri, M. J. (1987). Enciclopedia argentina de agricultura y jardinería. (3°). Acme.
Edwards, M. M. (1968). Dormancy in seeds of charlock: I. Developmental anatomy of the seed. Journal of Experimental Botany 19 (3): 575-582. https://doi.org/10.1093/jxb/19.3.575
Falasca, S. L. y Ulberich, A. C. (2012). La mostaza blanca (Sinapis alba), fuente de biodiesel para Argentina. En: A. C. Ulberich (Ed.), Estudios Ambientales III: Tandilia y el sudeste bonaerense (pp. 69-78). Buenos Aires: Universidad Nacional del Centro de la Provincia de Buenos Aires.
Fernandez, P., Carbonero, M. D., Leal, J. R., García, A. M., Ríos, P., Sanchez, M. E., Obregón, S. y De Haro, A. (2014). Capacidad de competencias de líneas de Brassica carinata, Brassica juncea y Sinapis alba seleccionadas por su poder biofumigante en cultivos en Dehesa. En J. Busqué Marcos, G. Salcedo Díaz, E. Serrano Martínez, M. J. Mora Martínez, B. Fernández Rodríguez (Eds.), Pastos y PAC 2014-2020 (pp. 169-173). 53º Reunión Científica de la Sociedad Española para el Estudio de los Pastos (SEEP).
Food Agriculture Organization of the United Nations [FAO]. (2015). Climate change and food systems: global assessments and implications for food security and trade. En A. Elbehri (Ed.), Food and Agriculture Organization of the United Nations. FAO.
Food Agriculture Organization of the United Nations [FAO]. (2021). Importaciones/exportaciones mostaza blanca 2019-2020. Estadísticas. Recuperado de: https://www.fao.org/faostat/es/#data/QCL
García-Fayos, P. (2015). Secreción de mucílago en semillas de angiospermas de la flora de las comarcas de Albarracín y Gúdar-Javalambre. Teruel 22 (1): 95-96.
Gupta, S. (2009). Biology and breeding of Crucifers. Taylor and Francis Group, CRC Press.
Hani, M., Lebazda, R. y Fenni, M. (2017). Studies of morphological characteristics and production of seeds weeds of species of family Brassicaceae (Cruciferous) in Setifian High Plateau, Algeria. Annual Research & Review in Biology 12 (5): 1-9. https://doi.org/10.9734/arrb/2017/33473
Heshmat, O., Saeed, H. A. y Fardin, K. (2011). The improvememt of seed germination traits in canola (Brassica napus L.) as affected by saline and drought stress. Journal of Agricultural Technology 7 (3): 611-622.
International Seed Testing Association [ISTA]. (2024). International Rules for Seed Testing. Recuperado de https://www.seedtest.org/api/rm/5RGZ3Y4CTZTZU78/ista-rules-2024-07-seedhealth-final.pdf
International Seed Testing Association [ISTA]. (2018). Handbook on seedling evaluation. (4° ed.). Bassersdorf. Zurich.
Jayasuriya, K. M. G. G., Baskin, J. M., Geneve, R. L. y Baskin, C. C. (2007). Morphology and anatomy of physical dormancy in Ipomoea lacunosa: Identification of the water gap in seeds of Convolvulaceae (Solanales). Annals of Botany 100 (1): 13-22. https://doi.org/10.1093/aob/mcm070
Kasem, W. T., Ghareeb, A. y Marwa, E. (2011). Seed morphology and seed coat sculpturing of 32 taxa of family Brassicaceae. Journal of American Science 7 (2): 166-178.
Katepa-Mupondwa, F., Gugel, R. K. y Raney, J. P. (2006). Genetic diversity for agronomic, morphological and seed quality traits in Sinapis alba L. (yellow mustard). Canadian Journal of Plant Science 86 (4): 1015-1025. https://doi.org/10.4141/P05-185
Kayacetin, F., Efeoglu, B. y Alizadeh, B. (2018). Effect of NaCl and PEG induced osmotic stress on germination and seedling growth properties in Wild Mustard (Sinapis arvensis L.). ANADOLU Journal of Aegean Agricultural Research Institute 28 (1): 62-68.
Koul, K. K., Nagpa, R. y Raina, S. N. (2000). Seed coat microsculpturing in Brassica and allied genera (Subtribes Brassicinae, Raphaninae, Moricandiinae). Annals of Botany 86 (2): 385-397. https://doi.org/10.1006/anbo.2000.1197
La Porte, J. (1953). Semillas y plántulas de las Crucíferas cultivadas en la Argentina. Universidad Nacional de Buenos Aires.
Lechowska, K., Kubala, S., Wojtyla, ?., Nowaczyk, G., Quinet, M., Lutts, S. y Garnczarska, M. (2019). New insight on water status in germinating Brassica napus seeds in relation to priming-improved germination. International Journal of Molecular Sciences 20 (3): 1-24. https://doi.org/10.3390/ijms20030540
Lu, Y., Liu, H., Chen, Y., Zhang, L., Kudusi, K. y Song, J. (2022). Effects of drought and salt stress on seed germination of ephemeral plants in desert of northwest China. Frontiers in Ecology and Evolution 10: 1-16. https://doi.org/10.3389/fevo.2022.1026095
Martin, A. C. (1946). The comparative internal morphology of seeds. The American Midland Naturalist 36 (3): 513-660.
Mehra, V., Tripathi, J. y Powell, A. A. (2003). Aerated hydration treatment improves the response of Brassica juncea and Brassica campestris seeds to stress during germination. Seed Science and Technology 31 (1): 57-70. https://doi.org/10.15258/sst.2003.31.1.07
Mejía-Garibay, B., López-Malo, A. y Guerrero-Beltrán, J. (2011). Mostaza: carácterísticas químicas, botánicas y sus aplicaciones en el área de alimentos. Temas selectos de Ingeniería de Alimentos 5 (1): 32-40.
Michel, B. E. (1983). Evaluation of the water potentials of solutions of polyethylene glycol 8000 both in the absence and presence of other solutes. Plant physiology 72 (1): 66-70. https://doi.org/10.1104/pp.72.1.66
Mitrovi?, P. M., Stamenkovi?, O. S., Bankovi?-Ili?, I., Djalovi?, I. G., Nježi?, Z. B., Farooq, M., Siddique, K. H. M. y Veljkovi?, V. B. (2020). White Mustard (Sinapis alba L.) Oil in biodiesel production: A review. Frontiers in Plant Science 11: 299 https://doi.org/10.3389/fpls.2020.00299
Moïse, J. A., Han, S., Gudynait?-Savitch, L., Johnson, D. A. y Miki, B. L. A. (2005). Seed coats: structure, development, composition, and biotechnology. In Vitro Cellular and Developmental Biology. Plant 41 (5): 620-644. https://doi.org/10.1079/IVP2005686
Munsell A. H. (2000). Soil color charts. Revised washable edition. Gretagmacbeth.
Munz, E., Rolletschek, H., Oeltze-Jafra, S., Fuchs, J., Guendel, A., Neuberger, T., Ortleb, S., Jakob, P. M. y Borisjuk, L. (2017). A functional imaging study of germinating oilseed rape seed. New Phytologist 216 (4): 1181-1190. https://doi.org/10.1111/nph.14736
Oberti, M., Bartoli, A. y Paunero, I. (2012). Descripción morfológica de un cultivar de mostaza blanca Sinapis alba L. (Brassicaceae) desarrollado en la Estación Experimental Agropecuaria San Pedro, INTA. En: I. E. Paunero (Ed.), Memoria técnica: investigaciones en mostaza, coriandro y otros (pp.15-16). San Pedro: Ediciones INTA.
Oyenard, M. E. (2023). Experiencia en el cultivo de mostaza en Chacabuco. Información Técnica INTA Pergamino. Recuperado de http://hdl.handle.net/20.500.12123/16696
Patané, C. y Tringali, S. (2011). Hydrotime analysis of Ethiopian Mustard (Brassica carinata A. Braun) seed germination under different temperatures. Journal of Agronomy and Crop Science 197 (2): 94-102.
Paunero, I. E. (2006). Experiencia en el cultivo de mostaza en San Pedro, provincia de Buenos Aires. Reporte Técnico. INTA. http://hdl.handle.net/20.500.12123/16696
Paunero, I. E., Gaetán, S., Riquelme Virgala, M. y Bazzigalupi, O. (2016). Análisis del comportamiento agronómico y la calidad de los granos de germoplasma de mostaza. Horticultura Argentina 35 (86): 5-18.
Peduzzi, A., Piacentini, D., Brasili, E., Della Rovere, F., Patriarca, A., D’Angeli, S., Altamura, M. M. y Falasca, G. (2024). Salt stress alters root meristem definition, vascular differentiation and metabolome in Sorghum bicolor (L.) genotypes. Environmental and Experimental Botany 226: 105876. https://doi.org/10.1016/j.envexpbot.2024.105876
Petrovi?, G., Jovi?i?, D., Nikoli?, Z., Tamindži?, G. Ignjatov, M., Miloševi?, D. y Miloševi?, B. (2016). Comparative study of drought and salt stress effects on germination and seedling growth of pea. Genetika 48 (1): 373-381. https://doi.org/10.2298/GENSR1601373P
Rahman, M., Khatun, A., Liu, L. y Barkla, B. J. (2018). Brassicaceae mustards: Traditional and agronomic uses in Australia and New Zealand. Molecules 23 (1): 231. https://doi.org/10.3390/molecules23010231
Ren, C. y Bewley, J. D. (1998). Seed development, testa structure and precocious germination of chinese cabbage (Brassica rapa subsp. pekinensis). Seed Science Research 8 (3): 385-397. https://doi.org/10.1017/s0960258500004311
Sáez-Bastante, J., Fernández-García, P., Saavedra, M., López-Bellido, L., Dorado, M. P. y Pinzi, S. (2016). Evaluation of Sinapis alba as feedstock for biodiesel production in Mediterranean climate. Fuel 184: 656-664. https://doi.org/10.1016/j.fuel.2016.07.022
Santo, A., Mattana, E., Frigau, L., Marzo Pastor, A., Picher Morelló, M. C. y Bacchetta, G. (2017). Effects of NaCl stress on seed germination and seedling development of Brassica insularis Moris (Brassicaceae). Plant Biology 19 (3): 368-376. https://doi.org/10.1111/plb.12539
Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch, S., Rueden, C., Saalfeld, S., Schmid, B., Tinevez, J. Y., White, D. J., Hartenstein, V., Eliceiri, K., Tomancak, P. y Cardona, A. (2012). Fiji: An open-source platform for biological-image analysis. Nature Methods 9 (7): 676-682. https://doi.org/10.1038/nmeth.2019
Secretaría de Agricultura Ganadería y Pesca. (2022). FOB oficial. Ministerio de Economía. Recuperado de https://www.magyp.gob.ar/mercadosagropecuarios/granos.php
Sliwinska, E. y Bewley, J. D. (2013). Overview of seed development, anatomy and morphology. En: R. S. Gallager (Ed.), Seeds: the ecology of regeneration in plant communities (3° ed., pp. 1-17), CABI Digital Library. https://doi.org/10.1079/9781780641836.0001
Sosa, L., Llanes, A., Reinoso, H., Reginato, M. y Luna, V. (2005). Osmotic and specific ion effects on the germination of Prosopis strombulifera. Annals of Botany 96 (2): 261-267. https://doi.org/10.1093/aob/mci173
Souza de Paula, A., Delgado, C. M. L., Silveira Paulilo, M. T. y Santos, M. (2012). Breaking physical dormancy of Cassia leptophylla and Senna macranthera (Fabaceae: Caesalpinioideae) seeds: water absorption and alternating temperatures. Seed Science Research 22 (4): 259-267. https://doi.org/10.1017/S096025851200013X
Tai-yien, C., Rong-lin, G., Young-zhen, L., Lian-li, L., Ke-chien, K. y Zheng-xi, A. (2001). Brassicaceae (Cruciferae). En: Z. Wu y P. Raven (Eds.), Flora of China (Vol. 8, pp. 1-193). St. Louis: Missouri Botanical Garden Press.
Timson, J. (1965). New method of recording germination data. Nature 207 (4993): 216-217. https://doi.org/10.1038/207216a0
Toosi, A. F., Bakar, B. Bin y Azizi, M. (2014). Effect of drought stress by using PEG 6000 on germination and early seedling growth of Brassica juncea var. Ensabi. Agronomy Journal 57: 360-363.
Upretee, P., Bandara, M. S. y Tanino, K. K. (2024). The role of seed characteristics on water uptake preceding germination. Seeds. Multidisciplinary Digital Publishing Institute 3 (3): 559-574. https://doi.org/10.3390/seeds3040038
Vaughan, J. G. y Whitehouse, J. M. (1971). Seed structure and the taxonomy of the Cruciferae. Botanical Journal of the Linnean Society 64 (4): 383-409. https://doi.org/10.1111/j.1095-8339.1971.tb02153.x
Veiga, C. A. (1984). El cultivo de mostaza blanca en Necochea. Anales de SAIPA - Sociedad Argentina para la Investigación de Productos Aromáticos 9: 14-21.
Werker, E. (1997). Seed Anatomy. Schweizerbart Science Publishers.
Western, T. L. (2012). The sticky tale of seed coat mucilages: Production, genetics, and role in seed germination and dispersal. Seed Science Research 22 (1): 1-25. https://doi.org/ 10.1017/S0960258511000249
Windauer, L., Altuna, A. y Benech-Arnold, R. (2007). Hydrotime analysis of Lesquerella fendleri seed germination responses to priming treatments. Industrial Crops and Products 25 (1): 70-74. https://doi.org/10.1016/j.indcrop.2006.07.004
Ye, N. (1983). Studies on the seedling types of dicotyledonous plants (Magnoliophyta, Magnoliopsida). Phytologia 54 (3): 161-189.
Zare, A. y Malekpoor-Shahraki, M. (2022). Quantitative seed germination of Brassicaceae family weeds under salinity and drought stresses conditions. Environmental Stresses in Crop Sciences 14 (4): 1127-1137. https://doi.org/https://doi.org/10.22077/escs.2020.3304.1843
Zarlavsky, G. E. (2014). Histología Vegetal técnicas simples y complejas (1° ed.). La Plata. Sociedad Argentina de Botánica.
Zeng, C. L., Wu, X. M. y Wang, J. B. (2006). Seed coat development and its evolutionary implications in diploid and amphidiploid Brassica species. Acta Biologica Cracoviensia Series Botanica 48 (2): 15-25.
Zhang, Y., Ma, Z. y Tian, F. (2016). Response of Vicia angustifolia L. seed germination and growth to drought stress. Agricultural Science & Technology 17 (7): 1556-1570.
Zhu, M., Dai, S., Ma, Q. y Li, S. (2021). Identification of the initial water-site and movement in Gleditsia sinensis seeds and its relation to seed coat structure. Plant Methods 17 (1): 1-13. https://doi.org/10.1186/s13007-021-00756-z
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 1900 Lilloa

Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.