Phytoremedial potential of the high Andean algae Mougeotia sp. and Spirogyra sp. (Charophyta)
Study of the bioremoval performance of copper and lead
DOI:

Keywords:
Acuatic ecosystem, bioremediation, central andes, phycoremediation, wetlandAbstract
In the 18th century, during the Viceroyalty of Peru, the Cerro de Pasco mine began exploiting silver and lead, an activity that continues to this day, polluting the soil and waters of the San Juan River basin in the Pasco region with heavy metals. To analyze the effectiveness of the green algae Mougeotia sp. and Spirogyra sp. in the bioremediation of copper and lead, samples of both species were collected from the San Juan River and after culturing in Chu 10 culture medium. The study was conducted using a 3 x 3 x 2 factorial experimental design (3 indicates the three treatments of copper and lead, and 2 are the two species of filamentous green algae), with 5 replicates per treatment. The results showed both Mougeotia sp. and Spirogyra sp. with the 30 mg L-1 lead treatment achieved the highest removal efficiencies of 97 % and 87.6 % lead bioremoval, respectively. Both species showed a remarkable lead and copper bioremoval capacity, but with a significant decrease in biomass and chlorophyll a content.
Downloads
References
Ahmad, S., Pandey, A., Pathak, V. V., Tyagi, V. V. y Kothari, R. (2020). Phycoremediation: Algae as eco-friendly tools for the removal of heavy metals from wastewaters. En: R. N. Bharagava y G. Saxena (Eds.), Bioremediation of industrial waste for environmental safety: Volume II: Biological agents and methods for industrial waste management (pp. 53-76). Springer.
https://doi.org/10.1007/978-981-13-3426-9_3
Al-Mayaly, I. K., Ismail, A. M. y Issa, A. A. (2012). Removal of zinc and copper by Mougeotia sp. in aqueous solutions. The Egyptian Journal of Experimental Biology 8 (1): 83-85.
Anu, P. R., Bijoy Nandan, S., Jayachandran, P. R. y Don Xavier, N. D. (2016). Toxicity effects of copper on the marine diatom, Chaetoceros calcitrans. Regional Studies in Marine Science 8: 498-504. https://doi.org/10,1016/j.rsma.2016.07.001
Balzarini, M., Di Rienzo, J., Tablada, M., Gonzalez, L., Bruno, C., Córdoba, M., Robledo, C., Casanoves, F., Lange, K. y Sorensen, D. (2011). Introducción a la bioestadística: Aplicaciones con InfoStat en agronomía. Universidad Nacional de Córdoba.
Bianchini, F. (2009). Evaluación de la calidad de los recursos hídricos en la provincia de Pasco y de la Salud en el Centro Poblado de Paragsha. Asociación Civil de Cultura Popular Labor.
Bold, H. C. y Wynne M. J. (1978). Introduction to the algae: structure and reproduction. Prentice- Hall.
Çelekli, A., Gültekin, E. y Bozkurt, H. (2016). Morphological and biochemical responses of Spirogyra setiformis exposed to cadmium. Clean – Soil, Air, Water 44 (3): 256-62. https://doi.org/10,1002/clen.201400434
Cronquist, A. (1997). Introducción a la Botánica. Compañía Editorial Continental.
Cirulis, J. T., Scott, J. A. y Ross, G. M. (2013). Management of oxidative stress by microalgae. Canadian Journal of Physiology and Pharmacology 91 (1): 15-21. https://doi.org/10.1139/cjpp-2012-0249
Chandrashekharaiah, P. S., Sanyal, D., Dasgupta, S., Sapre, A. y Banik, A. (2020). Heavy metal mitigation with special reference to bioremediation by mixotrophic algae-bacterial protocooperation. En: M. Faisal, Q. Saquib, A. A. Alatar, y A. A. Al-Khedhairy (Eds.), Cellular and Molecular Phytotoxicity of Heavy Metals (pp. 305-334). Springer International Publishing. https://doi.org/10,1007/978-3-030-45975-8_15
Chandrashekharaiah, P. S., Sanyal, D., Dasgupta, S. y Banik, A. (2021). Cadmium biosorption and biomass production by two freshwater microalgae Scenedesmus acutus and Chlorella pyrenoidosa: An integrated approach. Chemosphere 269: 128755. https://doi.org/10,1016/j.chemosphere.2020,128755
Chen, B. Y., Chen, C. Y., Guo, W. Q., Chang, H. W., Chen, W. M., Lee, D. J., Huang, C. C., Ren, N. Q. y Chang, J. S. (2014). Fixed-bed biosorption of cadmium using immobilized Scenedesmus obliquus CNW-N cells on loofa (Luffa cylindrica) sponge. Bioresource Technology 160: 175-181. https://doi.org/10,1016/j.biortech.2014.02.006
Cheng, W. H., Wong, L. S. y Chong, K. C. (2021). Effect of Lead (Pb) exposure towards green microalgae (Chlorella vulgaris) on the changes of physicochemical parameters in water. South African Journal of Chemical Engineering 37: 252-255. https://doi.org/10,1016/j.sajce.2021.04.002
Danouche, M., El Ghachtouli, N. y El Arroussi, H. (2021). Phycoremediation mechanisms of heavy metals using living green microalgae: Physicochemical and molecular approaches for enhancing selectivity and removal capacity. Heliyon 7 (7): e07609. https://doi.org/10,1016/j.heliyon.2021.e07609
Dehbi, M., Dehbi, F., Kanjal, M. I., Tahraoui, H., Zamouche, M., Amrane, A., Assadi, A. A., Hadadi, A. y Mouni, L. (2023). Analysis of heavy metal contamination in macroalgae from surface waters in Djelfa, Algeria. Water 15 (5): 974. https://doi.org/10,3390/w15050974
Di Rienzo, J. A., Casanoves, F., Balzarini, M. G., Gonzalez, L., Tablada, M. y Robledo, C. W. (2015). InfoStat Ver. 2015. Grupo InfoStat. Facultad de Ciencias Agropecuarias, Universidad Nacional de Córdoba.
Dong, L. L., Zhang, G. Q., Li, W., Ding, T., Wang, H. X. y Zhang, G. (2020). Effects of Cu2+ and Hg2+ on growth and photosynthesis of two Scenedesmus species. Polish Journal of Environmental Studies 29 (2): 1129-1135. https://doi.org/10,15244/pjoes/105977
Dong, L. L., Wang, H. X., Wang, Y., Hu, X. Q. y Wen, X. L. (2022). Effects of Cd2+ and Pb2+ on Growth and Photosynthesis of Two Freshwater Algae Species. Polish Journal of Environmental Studies 31 (3): 2059-2068. https://doi.org/10,15244/pjoes/143256
Doney, S. C. (2010). The growing human footprint on coastal and open-ocean biogeochemistry. Science 328 (5985): 1512-1516. https://doi.org/10,1126/science.1185198
Graham, J. M., Arancibia-Avila, P. y Graham, L. E. (1996). Physiological ecology of a species of the filamentous green alga Mougeotia under acidic conditions: Light and temperature effects on photosynthesis and respiration. Limnology and Oceanography 41 (2): 253-262. https://doi.org/10,4319/lo.1996.41.2.0253
Hazrat, A. y Ezzat, K., (2018). What are heavy metals? Long-standing controversy over the scientific use of the term ‘heavy metals’ – proposal of a comprehensive definition. Toxicological & Environmental Chemistry 100 (1): 6-9. https://doi.org/10,1080/02772248.2017.1413652
Hazrat, A., Ezzat, K. y Ikram, I. (2019). Environmental chemistry and ecotoxicology of hazardous heavy metals: environmental persistence, toxicity, and bioaccumulation. Journal of Chemistry 2019: 1-14. https://doi.org/10,1155/2019/6730305
He, J. y Chen, J. P. (2014). A comprehensive review on biosorption of heavy metals by algal biomass: Materials, performances, chemistry, and modeling simulation tools. Bioresource Technology 160: 67-78. https://doi.org/10,1016/j.biortech.2014.01.068
Hee, C. W., Shing, W. L. y Chi, C. K. (2021). Effect of lead (Pb) exposure towards green microalgae (Chlorella vulgaris) on the changes of physicochemical parameters in water. South African Journal of Chemical Engineering 37: 252-255. https://doi.org/10,1016/j.sajce.2021.04.002
Huarancca, T., Mariotti, L., Chiellini, C., Guglielminetti, L. y Fonseca, G. G. (2022). UV-B Irradiation Effect on Microalgae Performance in the Remediation of Effluent Derived from the Cigarette Butt Cleaning Process. Plants 11: 2356. https://doi.org/10.3390/ plants11182356
Jais, N. M., Mohamed, R. M. S. R., Al-Gheethi, A. A. y Hashim, M. K. A. (2017). The dual roles of phycoremediation of wet market wastewater for nutrients and heavy metals removal and microalgae biomass production. Clean Technologies and Environmental Policy 19 (1): 37-52. https://doi.org/10,1007/s10098-016-1235-7
Jeffrey, S. W. y Humphrey, G. F. (1975). New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton. Biochemie und Physiologie der Pflanzen 167 (2): 191-194. https://doi.org/10,1016/S0015-3796(17)30778-3
Kiran, B., Pathak, K., Kumar, R. y Deshmukh, D. (2017). Phycoremediation: An eco-friendly approach to solve water pollution problems. En: V. C. Kalia y P. Kumar (Eds.), Microbial Applications Vol.1: Bioremediation and Bioenergy (pp. 3-28). Springer International Publishing. https://doi.org/10,1007/978-3-319-52666-9_1
Komárková, J., Montoya, H. y Komárek, J. (2016). Cyanobacterial water bloom of Limnoraphis robusta in the Lago Mayor of Lake Titicaca. Can it develop?. Hydrobiologia 764 (1): 249-258. https://doi.org/10.1007/s10750-015-2298-x
Kumar, S., Mal, G. y Sharma, H. (2018). Waste Stabilization Ponds: A technical option for liquid waste management in rural areas in Haryana under Swachh Bharat Mission-Gramin. Environ. We Int. J. Sci. Tech. 13: 177-187.
Lee, Y. C. y Chang, S. P. (2011). The biosorption of heavy metals from aqueous solution by Spirogyra and Cladophora filamentous macroalgae. Bioresource Technology 102 (9): 5297-5304. https://doi.org/10,1016/j.biortech.2010,12.103
Leong, Y. K. y Chang, J. S. (2020). Bioremediation of heavy metals using microalgae: Recent advances and mechanisms. Bioresource Technology 303: 122886. https://doi.org/10,1016/j.biortech.2020,122886
Mane, P. C. y Bhosle, A. B. (2012). Bioremoval of some metals by living algae Spirogyra sp. and Spirullina sp from aqueous solution. International Journal of Environmental Research 6 (2): 571-576. https://doi.org/10,22059/ijer.2012.527
Ministerio del Ambiente (MINAM) (2016). Historia ambiental del Perú. Siglos XVIII y XIX. https://www.minam.gob.pe/wp-content/uploads/2016/07/Historia-ambiental-del-Per%C3%BA.-Siglos-XVIII-y-XIX.pdf
Pal, A., Jayamani, J. y Prasad, R. (2014). An urgent need to reassess the safe levels of copper in the drinking water: Lessons from studies on healthy animals harboring no genetic deficits. NeuroToxicology 44: 58-60, https://doi.org/10,1016/j.neuro.2014.05.005
Perez-Vazquez, F. J., Flores-Ramirez, R., Ochoa-Martinez, A. C., Orta-Garcia, S. T., Hernandez-Castro, B., Carrizalez-Yañez, L. y Pérez-Maldonado, I. N. (2014). Concentrations of persistent organic pollutants (POPs) and heavy metals in soil from San Luis Potosí, México. Environmental Monitoring and Assessment 187 (1): 4119. https://doi.org/10,1007/s10661-014-4119-5
Rastogi, R.P., Madamwar, D., Nakamoto, H. y Incharoensakdi, A. (2020). Resilience and Self-Regulation Processes of Microalgae under UV Radiation Stress. Journal of Photochemistry and Photobiology C: Photochemistry Reviews 43: 100322. https://doi.org/10.1016/j.jphotochemrev.2019.100322
Razaviarani, V., Arab, G., Lerdwanawattana, N. y Gadia, Y. (2023). Algal biomass dual roles in phycoremediation of wastewater and production of bioenergy and value-added products. International Journal of Environmental Science and Technology 20 (7): 8199-8216. https://doi.org/10,1007/s13762-022-04696-6
Rizvi, S., Goswami, L. y Gupta, S. K. (2020). A holistic approach for melanoidin removal via Fe-impregnated activated carbon prepared from Mangifera indica leaves biomass. Bioresource Technology Reports 12: 100591.
https://doi.org/10.1016/j.biteb.2020.100591
Salama, E. S., Roh, H. S., Dev, S., Khan, M. A., Abou-Shanab, R. A. I., Chang, S. W. y Jeon, B. H. (2019). Algae as a green technology for heavy metals removal from various wastewater. World Journal of Microbiology and Biotechnology 35 (5): 75. https://doi.org/10,1007/s11274-019-2648-3
Shah, N., Sohani, S., Thakkar, S., Doshi, H. y Gupta, G. (2022). Potential of live Spirogyra sp. in the bioaccumulation of copper and nickel ions: A study on suitability and sustainability. Journal of Applied Microbiology 132 (1): 331-339. https://doi.org/10,1111/jam.15188
Shamshad, I., Khan, S., Waqas, M., Asma, M., Nawab, J., Gul, N., Raiz, A. y Li, G. (2016). Heavy metal uptake capacity of fresh water algae (Oedogonium westti) from aqueous solution: A mesocosm research. International Journal of Phytoremediation 18 (4): 393-398. https://doi.org/10,1080/15226514.2015.1109594
Vetrivel, S. A., Diptanghu, M., Ebhin, M. R., Sydavalli, S., Gaurav, N. y Tiger, K. P. (2017). Green algae of the genus Spirogyra: A potential absorbent for heavy metal from coal mine water. Remediation Journal 27 (3): 81-90, https://doi.org/10,1002/rem.21522
Volesky, B. y Holan, Z. R. (1995). Biosorption of heavy metals. Biotechnology Progress 11 (3): 235-250. https://doi.org/10,1021/bp00033a001
Wu, H., Wei, G., Tan, X., Li, L. y Li, M. (2017). Species-dependent variation in sensitivity of Microcystis species to copper sulfate: Implication in algal toxicity of copper and controls of blooms. Scientific Reports 7 (1): 40393. https://doi.org/10,1038/srep40393
Wu, B., Ga, L., Wang, Y. y Ai, J. (2024). Recent Advances in the Application of Bionanosensors for the Analysis of Heavy Metals in Aquatic Environments. Molecules 29 (1): 34. https://doi.org/10,3390/molecules29010034
Xia, L., Li, H. y Song, S. (2016). Cell surface characterization of some oleaginous green algae. Journal of Applied Phycology 28 (4): 2323-2332. https://doi.org/10,1007/s10811-015-0768-1
Xue, H. B., Stumm, W. y Sigg, L. (1988). The binding of heavy metals to algal surfaces. Water Research 22 (7): 917-926. https://doi.org/10,1016/0043-1354(88)90029-2
Zainith, S., Saxena, G., Kishor, R. y Bharagava, R. N. (2021). Chapter 20 - Application of microalgae in industrial effluent treatment, contaminants removal, and biodiesel production: Opportunities, challenges, and future prospects. In: G. Saxena, V. Kumar y M. P. Shah (Eds.), Bioremediation for Environmental Sustainability (pp. 481-517).
Zhang, C., Nie, S., Liang, J., Zeng, G., Wu, H., Hua, S., Liu, J., Yuan, Y., Xiao, H., Deng, L. y Xiang, H. (2016). Effects of heavy metals and soil physicochemical properties on wetland soil microbial biomass and bacterial community structure. Science of The Total Environment 557-558: 785-790, https://doi.org/10,1016/j.scitotenv.2016.01.170
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Lilloa

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.