Remoción de cadmio y cobre por Desmodesmus communis (Chlorophyta, Sphaeropleales) aislada del humedal altoandino lago Junín (Perú)
DOI:
Palabras clave:
Algas verdes, andes, biorremediación, ficorremediaciónResumen
El Lago Junín es un humedal altoandino considerado como el segundo lago más extenso del Perú. Sin embargo, este lago está disturbado con residuos de metales pesados y desechos domésticos que ingresan por el embalse de Upamayo. El objetivo del estudio fue determinar la eficacia de Desmodesmus communis en la extracción del cadmio y cobre. El fitoplancton se obtuvo mediante arrastre horizontal en 4 estaciones de muestreo. En el laboratorio, se sembró el fitoplancton en placas de Petri con agar y medio basal Bold (MBB). Luego, colonias microalgales fueron cultivadas en matraces con MBB líquido; la remoción de metales se determinó por diferencia entre concentración inicial y final de metales. La biomasa microalgal se calculó por diferencia entre peso inicial y peso final. Para evaluar clorofila a, se tamizaron cultivos unialgales y se agregó acetona 90 %, se centrifugó a 2500 rpm durante 5 minutos. En un espectrofotómetro de luz, en sobrenadante de clorofila se efectuaron lecturas en absorbancia de 630, 647, 664 y 750 nm. La densidad celular fue evaluada diariamente en cámara de Neubauer, y el conteo celular en un microscopio. Los resultados muestran que D. communis evaluadas con tratamientos de 40 mg L-1 de cadmio y 6 mg L-1 de cobre permitieron obtener la mayor remoción de cadmio con 46,56 %, y de cobre 24,79 %, respectivamente. No obstante, la exposición D. communis a tratamientos de cobre y cadmio, disminuyeron la biomasa, la densidad celular y el contenido de clorofila a en comparación con el control negativo obteniendo una mayor biomasa (0,21 g L-1), alto contenido de clorofila a (22,14 mg L-1) y la máxima densidad celular (192,05 × 105 células ml-1). Esto sugiere que esta microalga es tolerante a cadmio y al cobre, y su extracción del agua es posible debido a mecanismos de bioacumulación.
Descargas
Citas
Abu-Ghosh, S, Dubinsky, Z, Verdelho, V y Iluz, D (2021). Unconventional high-value products from microalgae. A review. Bioresource Technology 329: 124895. https://doi.org/10.1016/j.biortech.2021.124895 DOI: https://doi.org/10.1016/j.biortech.2021.124895
Algae Base (2025). World-wide electronic publication, University of Galway. https://www.algaebase.org (consultado abril, 2025).
Aluç, Y. (2023). Antioxidative defense systems in two scenedesmus species exposed to copper and lead. Pakistany Journal of Botany 55 (6): 2047-2055. http://dx.doi.org/10.30848/PJB2023-6(41) DOI: https://doi.org/10.30848/PJB2023-6(41)
Aksu, Z. y Dönmez, G. (2006). Binary biosorption of cadmium (II) and nickel (II) onto dried Chlorella vulgaris: Co-ion effect on mono-component isotherm parameters. Process Biochemistry 41 (4): 860-868. https://doi.org/10.1016/j.procbio.2005.10.025 DOI: https://doi.org/10.1016/j.procbio.2005.10.025
Antolín, B., Torres, A., García, P. A., Bolado, S. y Vega, M. (2024). Mechanisms of copper and zinc bioremoval by microalgae and bacteria grown in nutrient rich wastewaters. Chemosphere 355: 141803. https://doi.org/10.1016/j.chemosphere.2024.141803 DOI: https://doi.org/10.1016/j.chemosphere.2024.141803
Balzarini, M., Di Rienzo, J., Tablada, M., Gonzalez, L., Bruno, C., Córdoba, M., Robledo, W., Casanoves, F., Lange, K. y Sorensen, D. (2011).
Introducción a la bioestadística: Aplicaciones con InfoStat en agronomía. Universidad Nacional de Córdoba.
Çelekli, A., Kap?, M. y Bozkurt, H. (2013). Effect of Cadmium on Biomass, Pigmentation, Malondialdehyde, and Proline of Scenedesmus quadricauda var. longispina. Bulletin of Environmental Contamination and Toxicology 91 (1): 571-576. https://doi.org/10.1007/s00128-013-1100-x DOI: https://doi.org/10.1007/s00128-013-1100-x
Chandrashekharaiah, P. S., Sanyal, D., Dasgupta, S., Sapre, A. y Banik, A. (2020). Heavy metal mitigation with special reference to bioremediation by mixotrophic algae-bacterial protocooperation. En: M. Faisal, Q. Saquib, A.A. Alatar, & A.A. Al-Khedhairy (Eds.), Cellular and Molecular Phytotoxicity of Heavy Metals. (pp. 305-334). Springer International Publishing. https://doi.org/10.1007/978-3-030-45975-8_15 DOI: https://doi.org/10.1007/978-3-030-45975-8_15
Chandrashekharaiah, P. S., Debanjan, S., Santanu, D. y Avishek, B. (2021). Cadmium biosorption and biomass production by two freshwater microalgae Scenedesmus acutus and Chlorella pyrenoidosa: An integrated approach. Chemosphere 269 (1): 1-12. https://doi.org/10.1016/j.chemosphere.2020.128755 DOI: https://doi.org/10.1016/j.chemosphere.2020.128755
Chia, M. A., Galadima, S. Y. y Japhet, W. S. (2015). Combined effect of atrazine and copper on the growth, biomass production, morphology and antioxidant response of Scenedesmus quadricauda. Phycologia 54 (2): 109-117. https://doi.org/10.2216/14-71.1 DOI: https://doi.org/10.2216/14-71.1
Chiu, C.S ., Chiu, P. H., Yong, T. C. Tsai, H. P., Soong, K., Huang, H. E. y Ching-Nen, N. H. (2020). Mechanisms protect airborne green microalgae during long distance dispersal. Scientific Report 10 (1): 13984. https://doi.org/10.1038/s41598-020-71004-y DOI: https://doi.org/10.1038/s41598-020-71004-y
Comas, A. A. (2020). Las interpretaciones de los taxones, uno de los problemas de la taxonomía tradicional. Caso: Scenedesmus sensu lato (Sphaeropleales, Chlorophyceae). Cymbella 6 (3): 139-150.
Comisión Nacional del Agua [CNA]. (2004). Guía para la colecta, manejo y las observaciones de campo para bioindicadores de la calidad del agua, México.
Dong, L. L., Zhang, G., Li, W., Ding, T., Wang, H. y Zhang, G. (2020). Effects of Cu2+ and Hg2+ on growth and photosynthesis of two Scenedesmus species. Polish Journal of Environmental Studies 29 (2): 1129-1135. https://Doi.Org/10.15244/Pjoes/105977 DOI: https://doi.org/10.15244/pjoes/105977
Fargasová, A. (1999). The green alga Scenedesmus quadricauda: a subject for the study of inhibitory effects of Cd, Cu, Zn, Pb and Fe. Biologia 54 (3): 303-308.
Flouty, R. y Estephane, G. (2012). Bioaccumulation and biosorption of copper and lead by a unicellular algae Chlamydomonas reinhardtii in single and binary metal systems: A comparative study. Journal of Environmental Management 111 (1): 106-114. https://doi.org/10.1016/j.jenvman.2012.06.042 DOI: https://doi.org/10.1016/j.jenvman.2012.06.042
Gong, Y., Zhao, D. y Wang, Q. (2018). An overview of field-scale studies on remediation of soil contaminated with heavy metals and metalloids: technical progress over the last decade, Water Research 147 (1): 440-460. https://doi.org/10.1016/j.watres.2018.10,024 DOI: https://doi.org/10.1016/j.watres.2018.10.024
Hegewald, E. (1997). Taxonomy and Phylogeny of Scenedesmus. Algae 12 (4): 235-46.
Huang, J. J, Lin. S, Xu. W y Cheung. P. C. K. (2018). Enhancement of the production of bioactive microalgal metabolites by ultraviolet radiation (UVA 365 nm). Journal of Agricultural and Food Chemistry 66 (39): 10215-10224. https://doi.org/10.1021/acs.jafc.8b03789 DOI: https://doi.org/10.1021/acs.jafc.8b03789
Ismaiel, M. M. S. y Said, A. A. (2018). Tolerance of Pseudochlorella pringsheimii to Cd and Pb stress: role of antioxidants and biochemical contents in metal detoxification. Ecotoxicology and Environmental Safety 162 (1): 704-712. https://doi.org/10.1016/j.ecoenv.2018.08.088 DOI: https://doi.org/10.1016/j.ecoenv.2018.08.088
Jacobsen, D. y Marín, R. (2008). Bolivian Altiplanostreams with low richness of macroinvertebrates and large diel fluctuations in temperature and dissolved oxygen. Aquatic Ecology 42 (1): 643-656. http://dx.doi.org/10.1007/s10452-007-9127-x DOI: https://doi.org/10.1007/s10452-007-9127-x
Jais, N. M., Mohamed, R. M. S. R., Al-Gheethi, A. A. y Amir, M. K. (2017). The dual roles of phycoremediation of wet market wastewater for nutrients and heavy metals removal and microalgae biomass production. Clean Technologies and Environmental Policy 19 (1): 37-52. https://doi.org/10.1007/s10098-016-1235-7 DOI: https://doi.org/10.1007/s10098-016-1235-7
Jeffrey, S. W. y Humphrey, G. F. (1975). New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton. Biochemie und Physiologie der Pflanzen 167 (2): 191-194. https://doi.org/10.1016/s0015-3796(17)30778-3 DOI: https://doi.org/10.1016/S0015-3796(17)30778-3
Kiran, B., Pathak, K., Kumar, R. y Deshmukh, D. (2017). Phycoremediation: An Ecofriendly Approach to Solve Water Pollution Problems. En V. Kalia y P. Kumar (Eds.), Microbial Applications Vol 1 (pp. 3-28). Springer. https://doi.org/10.1007/978-3-319-52666-9_1 DOI: https://doi.org/10.1007/978-3-319-52666-9_1
Kumar, K. S., Dahms, H.-U., Lee, J.-S., Kim, H. C., Lee, W. C. y Shin, K.-H. (2014). Algal photosynthetic responses to toxic metals and herbicides assessed by chlorophyll a fluorescence. Ecotoxicology and Environmental Safety 104 (1): 51-71. https://doi.org/10.1016/j.ecoenv.2014.01.042 DOI: https://doi.org/10.1016/j.ecoenv.2014.01.042
Küpper, H., Šetlík, I., Spiller, M., Küpper, F. C. y Prášil, O. (2002). Heavy metals induced inhibition of photosynthesis: Targets of in vivo heavy metal chlorophyll formation. Journal of Phycology 38 (1): 429-441. https://doi.org/10.1046/j.1529-8817.2002.01148.x DOI: https://doi.org/10.1046/j.1529-8817.2002.01148.x
Lee, Y. C. y Chang, S. P. (2011). The biosorption of heavy metals from aqueous solutions by Spirogyra and Cladophora filamentous macroalgae. Bioresource Technology 102 (9): 5297-5304. https://doi.org/10.1016/j.biortech.2010.12.103 DOI: https://doi.org/10.1016/j.biortech.2010.12.103
Leong, Y. K. y Chang, J. S. (2020). Bioremediation of heavy metals using microalgae: recent advances and mechanisms. Bioresource Technology 303 (1): 122886. https://doi.org/10.1016/j.biortech.2020.122886 DOI: https://doi.org/10.1016/j.biortech.2020.122886
Ljubic, A., Thulesen, E. T., Jacobsen, C. y Jakobsen, J. (2021). UVB exposure stimulates production of vitamin D3 in selected microalgae. Algal Research 59: 102472. https://doi.org/10.1016/j.algal.2021.102472 DOI: https://doi.org/10.1016/j.algal.2021.102472
Li, S., Chu, R., Hu, D., Yin, Z., Mo, F., Hu, T., Liu, C. y Zhu, L. (2020). Combined effects of 17?-estradiol and copper on growth, biochemical characteristics and pollutant removals of freshwater microalgae Scenedesmus dimorphus. Science of The Total Environment 730 (1): 138597. https://doi.org/10.1016/j.scitotenv.2020.138597 DOI: https://doi.org/10.1016/j.scitotenv.2020.138597
Ma, X., Chen, Y., Liu, F., Zhang, S. y Wei, Q. (2021). Enhanced tolerance and resistance characteristics of Scenedesmus obliquus FACHB-12 with K3 carrier in cadmium polluted water. Algal Research 55 (1): 1-10. https://doi.org/10.1016/j.algal.2021.102267 DOI: https://doi.org/10.1016/j.algal.2021.102267
Marinova, G., Ivanova, J., Pilarski, P., Chernev, G. y Chaneva, G. (2018). Effect of heavy metals on the green alga Scenedesmus incrassatulus. Oxidation Communications 41 (2): 318-328.
Mrv?i?, J., Stanzer, D., Šoli?, E. y Stehlik-Tomas, V. (2012). Interaction of lactic acid bacteria with metal ions: opportunities for improving food safety and quality. World Journal of Microbiology and Biotechnology 28 (1): 2771-2782. https://doi.org/10.1007/s11274-012-1094-2 DOI: https://doi.org/10.1007/s11274-012-1094-2
Mo, L., Yang, Y., Zhao, D., Qin, L., Yuan, B. y Liang, N. (2022). Time-Dependent Toxicity and Health Effects Mechanism of Cadmium to Three Green Algae. International Journal of Environmental Research and Public Health 19 (1): 10974. https://doi.org/10.3390%2Fijerph191710974 DOI: https://doi.org/10.3390/ijerph191710974
Monteiro, C. M., Castro, P. M. L. y Malcata, F. X. (2012). Metal uptake by microalgae: Underlying mechanisms and practical applications. Biotechnological Progress 28 (2): 299-311. https://doi.org/10.1002/btpr.1504 DOI: https://doi.org/10.1002/btpr.1504
Monteiro, C. M., Fonseca, S. C., Castro, P. M. L. y Malcata, F. X. (2011). Toxicity of cadmium and zinc on two microalgae, Scenedesmus obliquus and Desmodesmus pleiomorphus, from Northern Portugal. Journal of Applied Phycology 23 (1): 97-103. https://doi.org/10.1007/s10811-010-9542-6 DOI: https://doi.org/10.1007/s10811-010-9542-6
Narula, P., Mahajan, A., Gurnani, C., Kumar, V. y Mukhija, S. (2015). Microalgae as an indispensable tool against heavy metals toxicity to plants: A review. International Journal of Pharmaceutical Sciences Review and Research 31 (1): 86-96.
Nichols, H. W. y Bold, H. C. (1965). Trichosarcina polymorpha Gen. et Sp. Nov. Journal of Phycology 1 (1): 34-38. https://doi.org/10.1111/j.1529-8817.1965.tb04552.x DOI: https://doi.org/10.1111/j.1529-8817.1965.tb04552.x
Organismo de Evaluación y Fiscalización Ambiental [OEFA]. (2015). Informe de evaluación ambiental del Lago Chinchaycocha. Ministerio del Ambiente.
Pal, A. (2014). Copper toxicity induced hepatocerebral and neurodegenerative diseases: an urgent need for prognostic biomarkers. Neurotoxicology 40 (1): 97-101. https://doi.org/10.1016/j.neuro.2013.12.001 DOI: https://doi.org/10.1016/j.neuro.2013.12.001
Park, J. S., Hwang, I. S., Oh, E.J., Yoo, J. y Chung, K.Y. (2019). Behavior of Nutrients and Heavy Metals (Cu, Zn) and Applicability Evaluation from Swine Wastewater Treatment Using Microalga Scenedesmus obliquus. Applied Chemistry for Engineering 30 (2): 226-232. https://doi.org/10.14478/ace.2019.1003
Parsons, T. T. y Strickland, J. D. H. (1963). Discussion of spectrophotometric determination of marine-plant pigments, with revised equations for ascertaining chlorophylls and carotenoids. Journal of Marine Research 21 (1): 155-163.
Pérez Silva, K. R., Vega Bolaños, A. M., Hernández Rodríguez, L. C., Parra Ospina, D y Segura, A M. (2016). Use of scenedesmus for the removal of nutrients and heavy metals from waste waters of the textile industry. Ingenieria Solidaria 12 (20): 95-105. https://doi.org/10.16925/in.v19i20.1418 DOI: https://doi.org/10.16925/in.v19i20.1418
Rugnini, L., Costa, G., Congestri, R. y Bruno, L. (2017). Testing of two different strains of green microalgae for Cu and Ni removal from aqueous media. Science of The Total Environment 601-602: 959-967. https://doi.org/10.1016/j.scitotenv.2017.05.222 DOI: https://doi.org/10.1016/j.scitotenv.2017.05.222
Shamshad, I., Khan, S., Waqas, M., Asma, M., Nawab, J., Gul, N., Raiz, A. y Li, G. (2016). Heavy metal uptake capacity of freshwater algae Oedogonium westti from aqueous solution: A mesocosm research. International Journal of Phytoremediation 18 (4): 393-398. https://doi.org/10.1080/15226514.2015.1109594 DOI: https://doi.org/10.1080/15226514.2015.1109594
Tenorio, C. J. A. H., Ramírez, L. F. Ramos, A. R. y Soto, J. (2022). Effects of ultraviolet radiation on production of photoprotective compounds in microalgae of the genus Pediastrum from high Andean areas of Peru. Journal of Applied Pharmaceutical Science 12 (3): 87-95. https://dx.doi.org/10.7324/JAPS.2022.120309 DOI: https://doi.org/10.7324/JAPS.2022.120309
Terry, P. A y Stone, W. (2002). Biosorption of cadmium and copper contaminated water by Scenedesmus abundans. Chemosphere 47 (3): 249-255. https://doi.org/10.1016/S0045-6535(01)00303-4 DOI: https://doi.org/10.1016/S0045-6535(01)00303-4
Tukaj, Z., Ba?cik-Remisiewicz, A., Skowro?ski, T. y Tukaj, C. (2007). Cadmium effect on the growth, photosynthesis, ultrastructure and phytochelatin content of green microalga Scenedesmus armatus: A study at low and elevated CO2 concentration. Environmental and Experimental Botany 60 (3): 291-299. https://doi.org/10.1016/j.envexpbot.2006.12.002 DOI: https://doi.org/10.1016/j.envexpbot.2006.12.002
Universidad Nacional Mayor de San Marcos [UNMSM]. (2014). Métodos de colecta, identificación y análisis de comunidades biológicas: plancton, perifiton, bentos (macroinvertebrados) y necton (peces) en aguas continentales del Perú. Ministerio del Ambiente.
Vetrivel, S. A., Diptanghu, M., Ebhin, M. R., Sydavalli, S., Gaurav, N. y Tiger, K. P. (2017). Green algae of the genus Spirogyra: A potential absorbent for heavy metal from coal mine water. Remediation Journal 27 (3): 81-90. https://doi.org/10.1002/rem.21522 DOI: https://doi.org/10.1002/rem.21522
Volgusheva, A., Todorenko, D., Baizhumanov, A., Chivkunova, O., Solovchenko, A. y Antal, T. (2022). Cadmium- and chromium-induced damage and acclimation mechanisms in Desmodesmus communis and Chlorella sorokiniana. Journal of Applied Phycology 34 (3): 1435-1446. https://doi.org/10.1007/s10811-022-02747-6 DOI: https://doi.org/10.1007/s10811-022-02747-6
Wu, H, Wei, G., Tan, X. y Li, M. (2017). Species-dependent variation in sensitivity of Microcystis species to copper sulfate: implication in algal toxicity of copper and controls of blooms. Scientific Report 7 (40): 1-8. https://doi.org/10.1038/srep40393 DOI: https://doi.org/10.1038/srep40393
Xu, P., Tu, X., An, Z., Mi, W., Wan, D., Bi, Y. y Song, G. (2024). Cadmium-Induced physiological responses, biosorption and bioaccumulation in Scenedesmus obliquus. Toxics 12 (262): 1-19. https://doi.org/10.3390/toxics12040262 DOI: https://doi.org/10.3390/toxics12040262
Zainith, S., Saxena, G., Kishor, R. y Bharagava, R. N. (2021). Chapter 20. Application of microalgae in industrial effluent treatment, contaminants removal, and biodiesel production: Opportunities, challenges, and future prospects. In: G. Saxena, V. Kumar y M. P. Shah (Eds.). https://doi.org/10.1016/B978-0-12-820524-2.00020-1 DOI: https://doi.org/10.1016/B978-0-12-820524-2.00020-1
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 1900 Lilloa

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.

