Potencial ficorremediador de algas altoandinas Mougeotia sp. y Spirogyra sp. (Charophyta)

Evaluación de la capacidad de bioremoción de cobre y plomo

Autores/as

DOI:

https://doi.org/10.30550/j.lil/2015

Palabras clave:

Andes centrales, biorremediación, humedal, ficorremediación, ecosistema acuático

Resumen

En el siglo XVIII, durante el virreinato del Perú, la mina Cerro de Pasco inició la explotación de plata y plomo, actividad que persiste hasta la actualidad y que continúa contaminando con metales pesados el suelo y las aguas de la cuenca del río San Juan, en el departamento de Pasco. Con el fin de analizar la eficacia de las algas verdes altoandinas Mougeotia sp. y Spirogyra sp. en la bioremoción de cobre y plomo, se recolectaron muestras de ambas especies en el río San Juan, y tras cultivarlas en medio de cultivo Chu 10. El estudio se realizó con un diseño experimental factorial de 3 x 3 x 2 (3 indican los tres tratamientos de cobre y de plomo, y 2 son las dos especies de algas verdes filamentosas), con 5 repeticiones por tratamiento. Los resultados mostraron tanto Mougeotia sp. y Spirogyra sp. con el tratamiento de 30 mg L-1 de plomo lograron las eficiencias de remoción más elevadas, del 97 % y 87,6 % de bioremoción de plomo, respectivamente. Ambas especies registraron una notable capacidad de bioremoción de plomo y cobre, empero con disminución significativa en su biomasa y en el contenido de clorofila a.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Ahmad, S., Pandey, A., Pathak, V. V., Tyagi, V. V. y Kothari, R. (2020). Phycoremediation: Algae as eco-friendly tools for the removal of heavy metals from wastewaters. En: R. N. Bharagava y G. Saxena (Eds.), Bioremediation of industrial waste for environmental safety: Volume II: Biological agents and methods for industrial waste management (pp. 53-76). Springer.

https://doi.org/10.1007/978-981-13-3426-9_3

Al-Mayaly, I. K., Ismail, A. M. y Issa, A. A. (2012). Removal of zinc and copper by Mougeotia sp. in aqueous solutions. The Egyptian Journal of Experimental Biology 8 (1): 83-85.

Anu, P. R., Bijoy Nandan, S., Jayachandran, P. R. y Don Xavier, N. D. (2016). Toxicity effects of copper on the marine diatom, Chaetoceros calcitrans. Regional Studies in Marine Science 8: 498-504. https://doi.org/10,1016/j.rsma.2016.07.001

Balzarini, M., Di Rienzo, J., Tablada, M., Gonzalez, L., Bruno, C., Córdoba, M., Robledo, C., Casanoves, F., Lange, K. y Sorensen, D. (2011). Introducción a la bioestadística: Aplicaciones con InfoStat en agronomía. Universidad Nacional de Córdoba.

Bianchini, F. (2009). Evaluación de la calidad de los recursos hídricos en la provincia de Pasco y de la Salud en el Centro Poblado de Paragsha. Asociación Civil de Cultura Popular Labor.

Bold, H. C. y Wynne M. J. (1978). Introduction to the algae: structure and reproduction. Prentice- Hall.

Çelekli, A., Gültekin, E. y Bozkurt, H. (2016). Morphological and biochemical responses of Spirogyra setiformis exposed to cadmium. Clean – Soil, Air, Water 44 (3): 256-62. https://doi.org/10,1002/clen.201400434

Cronquist, A. (1997). Introducción a la Botánica. Compañía Editorial Continental.

Cirulis, J. T., Scott, J. A. y Ross, G. M. (2013). Management of oxidative stress by microalgae. Canadian Journal of Physiology and Pharmacology 91 (1): 15-21. https://doi.org/10.1139/cjpp-2012-0249

Chandrashekharaiah, P. S., Sanyal, D., Dasgupta, S., Sapre, A. y Banik, A. (2020). Heavy metal mitigation with special reference to bioremediation by mixotrophic algae-bacterial protocooperation. En: M. Faisal, Q. Saquib, A. A. Alatar, y A. A. Al-Khedhairy (Eds.), Cellular and Molecular Phytotoxicity of Heavy Metals (pp. 305-334). Springer International Publishing. https://doi.org/10,1007/978-3-030-45975-8_15

Chandrashekharaiah, P. S., Sanyal, D., Dasgupta, S. y Banik, A. (2021). Cadmium biosorption and biomass production by two freshwater microalgae Scenedesmus acutus and Chlorella pyrenoidosa: An integrated approach. Chemosphere 269: 128755. https://doi.org/10,1016/j.chemosphere.2020,128755

Chen, B. Y., Chen, C. Y., Guo, W. Q., Chang, H. W., Chen, W. M., Lee, D. J., Huang, C. C., Ren, N. Q. y Chang, J. S. (2014). Fixed-bed biosorption of cadmium using immobilized Scenedesmus obliquus CNW-N cells on loofa (Luffa cylindrica) sponge. Bioresource Technology 160: 175-181. https://doi.org/10,1016/j.biortech.2014.02.006

Cheng, W. H., Wong, L. S. y Chong, K. C. (2021). Effect of Lead (Pb) exposure towards green microalgae (Chlorella vulgaris) on the changes of physicochemical parameters in water. South African Journal of Chemical Engineering 37: 252-255. https://doi.org/10,1016/j.sajce.2021.04.002

Danouche, M., El Ghachtouli, N. y El Arroussi, H. (2021). Phycoremediation mechanisms of heavy metals using living green microalgae: Physicochemical and molecular approaches for enhancing selectivity and removal capacity. Heliyon 7 (7): e07609. https://doi.org/10,1016/j.heliyon.2021.e07609

Dehbi, M., Dehbi, F., Kanjal, M. I., Tahraoui, H., Zamouche, M., Amrane, A., Assadi, A. A., Hadadi, A. y Mouni, L. (2023). Analysis of heavy metal contamination in macroalgae from surface waters in Djelfa, Algeria. Water 15 (5): 974. https://doi.org/10,3390/w15050974

Di Rienzo, J. A., Casanoves, F., Balzarini, M. G., Gonzalez, L., Tablada, M. y Robledo, C. W. (2015). InfoStat Ver. 2015. Grupo InfoStat. Facultad de Ciencias Agropecuarias, Universidad Nacional de Córdoba.

Dong, L. L., Zhang, G. Q., Li, W., Ding, T., Wang, H. X. y Zhang, G. (2020). Effects of Cu2+ and Hg2+ on growth and photosynthesis of two Scenedesmus species. Polish Journal of Environmental Studies 29 (2): 1129-1135. https://doi.org/10,15244/pjoes/105977

Dong, L. L., Wang, H. X., Wang, Y., Hu, X. Q. y Wen, X. L. (2022). Effects of Cd2+ and Pb2+ on Growth and Photosynthesis of Two Freshwater Algae Species. Polish Journal of Environmental Studies 31 (3): 2059-2068. https://doi.org/10,15244/pjoes/143256

Doney, S. C. (2010). The growing human footprint on coastal and open-ocean biogeochemistry. Science 328 (5985): 1512-1516. https://doi.org/10,1126/science.1185198

Graham, J. M., Arancibia-Avila, P. y Graham, L. E. (1996). Physiological ecology of a species of the filamentous green alga Mougeotia under acidic conditions: Light and temperature effects on photosynthesis and respiration. Limnology and Oceanography 41 (2): 253-262. https://doi.org/10,4319/lo.1996.41.2.0253

Hazrat, A. y Ezzat, K., (2018). What are heavy metals? Long-standing controversy over the scientific use of the term ‘heavy metals’ – proposal of a comprehensive definition. Toxicological & Environmental Chemistry 100 (1): 6-9. https://doi.org/10,1080/02772248.2017.1413652

Hazrat, A., Ezzat, K. y Ikram, I. (2019). Environmental chemistry and ecotoxicology of hazardous heavy metals: environmental persistence, toxicity, and bioaccumulation. Journal of Chemistry 2019: 1-14. https://doi.org/10,1155/2019/6730305

He, J. y Chen, J. P. (2014). A comprehensive review on biosorption of heavy metals by algal biomass: Materials, performances, chemistry, and modeling simulation tools. Bioresource Technology 160: 67-78. https://doi.org/10,1016/j.biortech.2014.01.068

Hee, C. W., Shing, W. L. y Chi, C. K. (2021). Effect of lead (Pb) exposure towards green microalgae (Chlorella vulgaris) on the changes of physicochemical parameters in water. South African Journal of Chemical Engineering 37: 252-255. https://doi.org/10,1016/j.sajce.2021.04.002

Huarancca, T., Mariotti, L., Chiellini, C., Guglielminetti, L. y Fonseca, G. G. (2022). UV-B Irradiation Effect on Microalgae Performance in the Remediation of Effluent Derived from the Cigarette Butt Cleaning Process. Plants 11: 2356. https://doi.org/10.3390/ plants11182356

Jais, N. M., Mohamed, R. M. S. R., Al-Gheethi, A. A. y Hashim, M. K. A. (2017). The dual roles of phycoremediation of wet market wastewater for nutrients and heavy metals removal and microalgae biomass production. Clean Technologies and Environmental Policy 19 (1): 37-52. https://doi.org/10,1007/s10098-016-1235-7

Jeffrey, S. W. y Humphrey, G. F. (1975). New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton. Biochemie und Physiologie der Pflanzen 167 (2): 191-194. https://doi.org/10,1016/S0015-3796(17)30778-3

Kiran, B., Pathak, K., Kumar, R. y Deshmukh, D. (2017). Phycoremediation: An eco-friendly approach to solve water pollution problems. En: V. C. Kalia y P. Kumar (Eds.), Microbial Applications Vol.1: Bioremediation and Bioenergy (pp. 3-28). Springer International Publishing. https://doi.org/10,1007/978-3-319-52666-9_1

Komárková, J., Montoya, H. y Komárek, J. (2016). Cyanobacterial water bloom of Limnoraphis robusta in the Lago Mayor of Lake Titicaca. Can it develop?. Hydrobiologia 764 (1): 249-258. https://doi.org/10.1007/s10750-015-2298-x

Kumar, S., Mal, G. y Sharma, H. (2018). Waste Stabilization Ponds: A technical option for liquid waste management in rural areas in Haryana under Swachh Bharat Mission-Gramin. Environ. We Int. J. Sci. Tech. 13: 177-187.

Lee, Y. C. y Chang, S. P. (2011). The biosorption of heavy metals from aqueous solution by Spirogyra and Cladophora filamentous macroalgae. Bioresource Technology 102 (9): 5297-5304. https://doi.org/10,1016/j.biortech.2010,12.103

Leong, Y. K. y Chang, J. S. (2020). Bioremediation of heavy metals using microalgae: Recent advances and mechanisms. Bioresource Technology 303: 122886. https://doi.org/10,1016/j.biortech.2020,122886

Mane, P. C. y Bhosle, A. B. (2012). Bioremoval of some metals by living algae Spirogyra sp. and Spirullina sp from aqueous solution. International Journal of Environmental Research 6 (2): 571-576. https://doi.org/10,22059/ijer.2012.527

Ministerio del Ambiente (MINAM) (2016). Historia ambiental del Perú. Siglos XVIII y XIX. https://www.minam.gob.pe/wp-content/uploads/2016/07/Historia-ambiental-del-Per%C3%BA.-Siglos-XVIII-y-XIX.pdf

Pal, A., Jayamani, J. y Prasad, R. (2014). An urgent need to reassess the safe levels of copper in the drinking water: Lessons from studies on healthy animals harboring no genetic deficits. NeuroToxicology 44: 58-60, https://doi.org/10,1016/j.neuro.2014.05.005

Perez-Vazquez, F. J., Flores-Ramirez, R., Ochoa-Martinez, A. C., Orta-Garcia, S. T., Hernandez-Castro, B., Carrizalez-Yañez, L. y Pérez-Maldonado, I. N. (2014). Concentrations of persistent organic pollutants (POPs) and heavy metals in soil from San Luis Potosí, México. Environmental Monitoring and Assessment 187 (1): 4119. https://doi.org/10,1007/s10661-014-4119-5

Rastogi, R.P., Madamwar, D., Nakamoto, H. y Incharoensakdi, A. (2020). Resilience and Self-Regulation Processes of Microalgae under UV Radiation Stress. Journal of Photochemistry and Photobiology C: Photochemistry Reviews 43: 100322. https://doi.org/10.1016/j.jphotochemrev.2019.100322

Razaviarani, V., Arab, G., Lerdwanawattana, N. y Gadia, Y. (2023). Algal biomass dual roles in phycoremediation of wastewater and production of bioenergy and value-added products. International Journal of Environmental Science and Technology 20 (7): 8199-8216. https://doi.org/10,1007/s13762-022-04696-6

Rizvi, S., Goswami, L. y Gupta, S. K. (2020). A holistic approach for melanoidin removal via Fe-impregnated activated carbon prepared from Mangifera indica leaves biomass. Bioresource Technology Reports 12: 100591.

https://doi.org/10.1016/j.biteb.2020.100591

Salama, E. S., Roh, H. S., Dev, S., Khan, M. A., Abou-Shanab, R. A. I., Chang, S. W. y Jeon, B. H. (2019). Algae as a green technology for heavy metals removal from various wastewater. World Journal of Microbiology and Biotechnology 35 (5): 75. https://doi.org/10,1007/s11274-019-2648-3

Shah, N., Sohani, S., Thakkar, S., Doshi, H. y Gupta, G. (2022). Potential of live Spirogyra sp. in the bioaccumulation of copper and nickel ions: A study on suitability and sustainability. Journal of Applied Microbiology 132 (1): 331-339. https://doi.org/10,1111/jam.15188

Shamshad, I., Khan, S., Waqas, M., Asma, M., Nawab, J., Gul, N., Raiz, A. y Li, G. (2016). Heavy metal uptake capacity of fresh water algae (Oedogonium westti) from aqueous solution: A mesocosm research. International Journal of Phytoremediation 18 (4): 393-398. https://doi.org/10,1080/15226514.2015.1109594

Vetrivel, S. A., Diptanghu, M., Ebhin, M. R., Sydavalli, S., Gaurav, N. y Tiger, K. P. (2017). Green algae of the genus Spirogyra: A potential absorbent for heavy metal from coal mine water. Remediation Journal 27 (3): 81-90, https://doi.org/10,1002/rem.21522

Volesky, B. y Holan, Z. R. (1995). Biosorption of heavy metals. Biotechnology Progress 11 (3): 235-250. https://doi.org/10,1021/bp00033a001

Wu, H., Wei, G., Tan, X., Li, L. y Li, M. (2017). Species-dependent variation in sensitivity of Microcystis species to copper sulfate: Implication in algal toxicity of copper and controls of blooms. Scientific Reports 7 (1): 40393. https://doi.org/10,1038/srep40393

Wu, B., Ga, L., Wang, Y. y Ai, J. (2024). Recent Advances in the Application of Bionanosensors for the Analysis of Heavy Metals in Aquatic Environments. Molecules 29 (1): 34. https://doi.org/10,3390/molecules29010034

Xia, L., Li, H. y Song, S. (2016). Cell surface characterization of some oleaginous green algae. Journal of Applied Phycology 28 (4): 2323-2332. https://doi.org/10,1007/s10811-015-0768-1

Xue, H. B., Stumm, W. y Sigg, L. (1988). The binding of heavy metals to algal surfaces. Water Research 22 (7): 917-926. https://doi.org/10,1016/0043-1354(88)90029-2

Zainith, S., Saxena, G., Kishor, R. y Bharagava, R. N. (2021). Chapter 20 - Application of microalgae in industrial effluent treatment, contaminants removal, and biodiesel production: Opportunities, challenges, and future prospects. In: G. Saxena, V. Kumar y M. P. Shah (Eds.), Bioremediation for Environmental Sustainability (pp. 481-517).

Zhang, C., Nie, S., Liang, J., Zeng, G., Wu, H., Hua, S., Liu, J., Yuan, Y., Xiao, H., Deng, L. y Xiang, H. (2016). Effects of heavy metals and soil physicochemical properties on wetland soil microbial biomass and bacterial community structure. Science of The Total Environment 557-558: 785-790, https://doi.org/10,1016/j.scitotenv.2016.01.170

Potencial ficorremediador de algas altoandinas Mougeotia sp. y Spirogyra sp. (Charophyta): Evaluación de la capacidad de bioremoción de cobre y plomo

Descargas

Publicado

2024-12-13

Cómo citar

Jara Peña, E., Montoya Terreros, H. ., Quispe oré, K., Gómez Carrión, J. ., Quinteros-Gómez , Y. ., Sánchez Rojas, T., & Macedo Prada, D. (2024). Potencial ficorremediador de algas altoandinas Mougeotia sp. y Spirogyra sp. (Charophyta): Evaluación de la capacidad de bioremoción de cobre y plomo. Lilloa, 61(2), 415–434. https://doi.org/10.30550/j.lil/2015
سرور مجازی ایران Decentralized Exchange

Número

Sección

Artículos originales
فروشگاه اینترنتی صندلی اداری جوراب افزایش قد ژل افزایش قد خرید vpn سرور مجازی بایننس