Effect of temperature stress on the growth, physiological and biochemical parameters, and enzymatic and non-enzymatic activities of two Nostoc strains from different habitats
DOI:
Palavras-chave:
Antioxidant enzyme, nitrogenase activity, oxidative damage, reactive oxygen species, temperatureResumo
There is increasing evidence regarding the influence of elevated temperatures on the growth and productivity of photosynthetic organisms. In the current research, we compared physiological and biochemical responses of Nostoc spongiiforme Agardh ex Bornet et Flahault (1888) (freshwater) and Nostoc calcicola Brébisson ex Bornet & Flahault (1886) (marine water) by batch culture under various temperatures (25-45°C). A decrease in growth and photosynthetic pigment contents was observed with rising temperature in the N. spongiiforme, in contrast to N. calcicola. Furthermore, significantly higher levels of total peroxide and hydroxyl radicals were recorded at elevated temperatures, which in turn enhanced the accumulation of “malondialdehyde (MDA)” and carbonyl content, indicating greater oxidative damage in N. spongiiforme than N. calcicola. An increase in proline and “ascorbate (AsA)” content with rising temperature suggests that the cells of both Nostoc spp., in an attempt to mitigate the oxidative stress induced by temperature, showed higher proline and AsA content in N. calcicola than in N. spongiiforme. Likewise, an increase in the activity of superoxide dismutase (SOD) andcatalase (CAT) was also observed in N. calcicola in contrast to N. spongiiforme. The nitrogenease activity was also affected under different growth temperatures in both Nostoc spp. Hence, this study reveals that from the two Nostoc species studied, N. calcicole has the potential to thrive under changing climatic conditions. Further research will help in screening N. calcicola and the indentification of the genes that enable this cyanobacterium to thrive at higher temperatures, so they can be cultured in bulk and used for diverse biotechnological applications, even under extreme temperature conditions.
Downloads
Referências
Abed, R. M., Dobretsov, S. & Sudesh, K. (2009). Applications of cyanobacteria in biotechnology. Journal of applied microbiology 106 (1): 1-12. https://doi:10.1111/j.1365-2672.2008.03918.x
Aebi, H. (1984). Catalase in vitro. In Methods in enzymology 105: 121-126. https://doi: 10.1016/s0076-6879(84)05016-3
Asada, K. (1999). The water-water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Annual review of plant biology 50 (1): 601-639. https://doi:10.1146/annurev.arplant.50.1.601
Bates, L. S., Waldren, R. P. A. & Teare, I. D. (1973). Rapid determination of free proline for water-stress studies. Plant and soil 39: 205-207. htpps://doi:10.1007/BF00018060
Begara-Morales, J. C., Sánchez-Calvo, B., Chaki, M., Valderrama, R., Mata-Pérez, C., Padilla, M. N. & Barroso, J. B. (2016). Antioxidant systems are regulated by nitric oxide-mediated post-translational modifications (NO-PTMs). Frontiers in Plant Science 7: 152.
Bhandari, R. & Sharma, P. K. (2007). Effects of UV-B and high visual radiation on photosynthesis in freshwater Nostoc spongiaeforme and marine Phormidium corium cyanobacteria. Indian Journal of Biochemistry and Biophysics 44: 231-239. PubMed: 17970281.
Chen, H., Solangi, G. S., Guo, J., Wan, F. & Zhou, Z. (2018). Antioxidant responses of ragweed leaf beetle Ophraella communa (Coleoptera: Chrysomelidae) exposed to thermal stress. Frontiers in Physiology 9: 808. https://doi:10.3389/fphys.2018.00808
Davison, I. R. (1991). Environmental effects on algal photosynthesis: Temperature, Journal of Phycology 27 (1): 2-8. https://doi:10.1111/j.0022-3646.1991.00002.x
Dhindsa, R. S., Plumb-Dhindsa, P. A. & Thorpe, T. A. (1981). Leaf senescence: correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. Journal of Experimental botany 32 (1): 93-101. https://doi:10.1093/jxb/32.1.93
El-Rahman Mansy, A. E. & El-Bestawy, E. (2002). Toxicity and biodegradation of fluometuron by selected cyanobacterial species. World Journal of Microbiology and Biotechnology 18: 125-131. https://doi:10.1023/A:1014490811121
Halliwell, B. & Gutteridge, J. M. (1989). Free radicals in biology and medicine, Clarendon: Oxford Science Publications.
Han, W., Jing, Y. & Li, T. (2015). Compensatory growth in Microcystis aeruginosa after moderate high temperature exposure. Journal of Limnology 74. https://doi: 10.4081/jlimnol.2015.1164
Huner, N. P., Öquist, G. & Sarhan, F. (1998). Energy balance and acclimation to light and cold. Trends in plant science 3 (6): 224-230. https://doi:10.1016/S1360-1385(98)01248-5
Imlay, J. A. & Linn, S. (1988). DNA damage and oxygen radical toxicity. Science 240 (4857): 1302-1309. https://doi:10.1126/science.3287616
IPCC (2013). Intergovernmental Panel on Climate Change: Fifth assessment report.
Jankowiak, J., Hattenrath?Lehmann, T., Kramer, B. J., Ladds, M. & Gobler, C. J. (2019). Deciphering the effects of nitrogen, phosphorus, and temperature on cyanobacterial bloom intensification, diversity, and toxicity in western Lake Erie. Limnology and oceanography 64 (3): 1347-1370. https://doi:10.1002/lno.11120
Kampfenkel, K., Van Montagu, M. & Inzé, D. (1995). Extraction and determination of ascorbate and dehydroascorbate from plant tissue. Analytical Biochemistry 225: 165-167. https://doi:10.1006/abio.1995.1127. PubMed: 7778771.
K?odawska, K., Bujas, A., Turos-Cabal, M., ?bik, P., Fu, P. & Malec, P. (2019). Effect of growth temperature on biosynthesis and accumulation of carotenoids in cyanobacterium Anabaena sp. PCC 7120 under diazotrophic conditions. Microbiological research 226: 34-40. https://doi.org/10.1016/j.micres.2019.05.003
Kumar, J., Singh, D., Tyagi, M. B. & Kumar, A. (2019). Cyanobacteria: applications in biotechnology. In Cyanobacteria (pp. 327-346). Academic Press.
Larras, F., Lambert, A. S., Pesce, S., Rimet, F., Bouchez, A. & Montuelle, B. (2013). The effect of temperature and a herbicide mixture on freshwater periphytic algae. Ecotoxicology and environmental safety 98: 162-170. https://doi:10.1016/j.ecoenv.2013.09.007, PubMed: 24119653.
Leggat, W., Whitney, S. & Yellowlees, D. (2004). Is coral bleaching due to the instability of the zooxanthellae dark reactions?. Symbiosis 37 (1-3): 137-153.
Liu, Y., Zhao, Z., Si, J., Di, C., Han, J. & An, L. (2009). Brassinosteroids alleviate chilling-induced oxidative damage by enhancing antioxidant defense system in suspension cultured cells of Chorispora bungeana. Plant Growth Regulation 59: 207-214. https://doi:10.1007/s10725-009-9405-9
Mouquet, N., Lagadeuc, Y., Devictor, V., Doyen, L., Duputié, A., Eveillard, D. & Loreau, M. (2015). Predictive ecology in a changing world. Journal of applied ecology 52 (5): 1293-1310.https://doi:10.1111/1365-2664.12482
Poli, Y., Basava, R. K., Panigrahy, M., Vinukonda, V. P., Dokula, N. R., Voleti, S. R. & Neelamraju, S. (2013). Characterization of a Nagina22 rice mutant for heat tolerance and mapping of yield traits. Rice 6: 1-9. https://doi:10.1186/1939-8433-6-36
Raven, J. A. & Geider, R. J. (1988). Temperature and algal growth. New Phytologist 110: 441-461. https://doi:10.1111/j.1469-8137.1988.tb00282.x.
Reddy, Y. P., Yadav, R. K., Triipathi, K. & Abraham, G. (2019). Temperature induced physiological and biochemical alterations in the paddy field cyanobacterium Anabaena doliolum. Indian Journal of Experimental Biology 57: 346-352.
Renaud, S. M., Thinh, L. V., Lambrinidis, G. & Parry, D. L. (2002). Effect of temperature on growth, chemical composition and fatty acid composition of tropical Australian microalgae grown in batch cultures. Aquaculture 211(1-4): 195-214. https://doi:10.1016/S0044-8486(01)00875-4
Renger, G. (2012). Mechanism of light induced water splitting in Photosystem II of oxygen-evolving photosynthetic organisms. Biochimica et Biophysica Acta (BBA)-Bioenergetics 1817 (8): 1164-1176. https://doi:10.1016/j.bbabio.2012.02.005
Stanier, R. Y., Deruelles, J., Rippka, R., Herdman, M. & Waterbury, J. B. (1979). Generic assignments, strain histories and properties of pure cultures of cyanobacteria. Microbiology 111: 1-61. https://doi:10.1099/00221287-111-1-1
Sagisaka, S. (1976). The occurrence of peroxide in a perennial plant, Populus gelrica. Plant physiology 57 (2): 308-309. https://doi:10.1104/pp.57.2.308
Shamim, A., Farooqui, A., Siddiqui, M. H., Mahfooz, S. & Arif, J. (2017). Salinity induced modulations in the protective defense system and programmed cell death in Nostoc muscorium. Russian Journal of Plant Physiology 64: 861-868. https://doi: 10.1134/S1021443717060097
Sharkey, T. D. (2005). Effects of moderate heat stress on photosynthesis: importance of thylakoid reactions, rubisco deactivation, reactive oxygen species, and thermotolerance provided by isoprene. Plant, cell & environment 28 (3): 269-277. https://doi:10.1111/j.1365-3040.2005.01324.x
Sharma, G., Kumar, M., Ali, M. I. & Jasuja, N. D. (2014). Effect of carbon content, salinity and pH on Spirulina platensis for phycocyanin, allophycocyanin and phycoerythrin accumulation. Microbial and Biochemical Technology 6 (4): 202-206. https://doi: 10.4172/1948-5948.1000144
Singh, J. S., Kumar, A., Rai, A. N. & Singh, D. P. (2016). Cyanobacteria: A precious bio-resource in agriculture, ecosystem, and environmental sustainability. Frontiers in Microbiology 7: 529. https://doi:10.3389/fmicb.2016.00529, PubMed: 27148218
Stal, L. J. (2017). The effect of oxygen concentration and temperature on nitrogenase activity in the heterocystous cyanobacterium Fischerella sp. Scientific Reports 7 (1): 5402. https://doi.org/10.1038/s41598-017-05715-0
Stewart, W. D., Fitzgerald, G. P. & Burris, R. H. (1967). In situ studies on N2 fixation using the acetylene reduction technique. Proceedings of the National Academy of Sciences of the United States of America 58 (5): 2071-2078. https://doi.org/10.1073/pnas.58.5.2071
Thangaraj, B., Rajasekar, D. P., Vijayaraghavan, R., Garlapati, D., Devanesan, A. A., Lakshmanan, U. & Dharmar, P. (2017). Cytomorphological and nitrogen metabolic enzyme analysis of psychrophilic and mesophilic Nostoc sp.: A comparative outlook. 3. Biotechnology 7 (2): 1-10.
Thompson, P. A., Guo, M. X., Harrison, P. J. & Whyte, J. N. (1992). Effects of variation in temperature. II. On the fatty acid composition of eight species of marine phytoplankton 1. Journal of Phycology 28 (4): 488-497. https://doi.org/10.1111/j.0022-3646.1992.00488.x
Veaudor, T., Blanc-Garin, V., Chenebault, C., Diaz-Santos, E., Sassi, J. F., Cassier-Chauvat, C. & Chauvat, F. (2020). Recent advances in the photoautotrophic metabolism of cyanobacteria: Biotechnological implications. Life 10 (5): 71. https://doi:10.3390/life10050071
Vega López, A., Ayala López, G., Posadas Espadas, B. P., Olivares-Rubio, H. F. & Dzul-Caamal, R. (2013). Relations of oxidative stress in freshwater phytoplankton with heavy metals and polycyclic aromatic hydrocarbons. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 165 (4): 498-507. https://doi:10.1016/j.cbpa.2013.01.026
Wang, S., Zhang, D. & Pan, X. (2012). Effects of arsenic on growth and photosystem II (PSII) activity of Microcystis aeruginosa. Ecotoxicology and Environmental Safety 84: 104-111. https://doi.org/10.1016/j.ecoenv.2012.06.028
Wei, L., Huang, X. & Huang, Z. (2015). Temperature effects on lipid properties of microalgae Tetraselmis subcordiformis and Nannochloropsis oculata as biofuel resources. Chinese Journal of Oceanology and Limnology 33 (1) : 99-106. https://doi.org/10.1007/s00343-015-3346-0
Wu, L. F., Chen, P. C. & Lee, C. M. (2013). The effects of nitrogen sources and temperature on cell growth and lipid accumulation of microalgae. International Biodeterioration & Biodegradation 85: 506-510. https://doi:10.1016/j.ibiod.2013.05.016
Zhang, L. & Liu, J. (2016). Effects of heat stress on photosynthetic electron transport in a marine cyanobacterium Arthrospira sp. Journal of Applied Phycology 28: 757-763. https://doi: 10.1007/s10811-015-0615-4
Zheng, T., Zhou, M., Yang, L., Wang, Y., Wang, Y., Meng, Y., Liu, J. & Zuo, Z. (2020). Effects of high light and temperature on Microcystis aeruginosa cell growth and ?-cyclocitral emission. Ecotoxicology and Environmental Safety 192: 110313. https://doi.org/10.1016/j.ecoenv.2020.110313
Zhu, Q., Wu, L., Li, X., Li, G., Li, J., Li, C. & Zhang, L. (2020). Effects of ambient temperature on the redistribution efficiency of nutrients by desert cyanobacteria-Scytonema javanicum. Science of the Total Environment 737: 139733.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 1900 Lilloa

Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

