“Maximum photosynthetic assimilation in quinoa varieties (Chenopodium quinoa) from different geographic origins, and its relation to leaf morphology

Authors

  • Juan A. González Instituto de Ecología, Fundación Miguel Lillo
  • Graciela I. Ponessa Instituto de Morfología Vegetal, Fundación Miguel Lillo
  • Sebastián E. Buedo Instituto de Ecología, Fundación Miguel Lillo
  • María I. Mercado Instituto de Morfología Vegetal, Fundación Miguel Lillo
  • Fernando E. Prado Cátedra de Fisiología Vegetal, Facultad de Ciencias Naturales e IML, Universidad Nacional de Tucumán

Keywords:

Leaf tissues, photosynthesis, quinoa

Abstract

González, Juan A.; Graciela I. Ponessa; Sebastián E. Buedo; María I. Mercado; Fernando E. Prado. 2014. “Maximum photosynthetic assimilation in quinoa varieties (Chenopodium quinoa) from different geographic origins, and its relation to leaf morphology”. Lilloa 51 (2). Leaf gas exchange (Maxima photosynthetic assimilation, Amax; stomatal conductance, gs; leaf transpiration, Tr; internal CO2, and Ci concentration, and anatomical leaf data (stomatal density and size, tissue thickness), specific leaf area (SLA), photosynthetic and protection pigments in six quinoa varieties from dif ferent origins were analysed. Trials were carried out in an arid region of Argentina’s Nor thwest (Amaicha del Valle, 22º31’S, 65º59’ W, 1,985 m asl) under drought conditions. The varieties used were: Kancolla (Perú) and Sayaña (from Bolivian Altiplano, 3,850 m asl), Quinoa Blanca (from Cochabamaba, Bolivia, 2,570 m asl), Quinoa Roja (from Cangrejillos, Argentina, 3,700 m asl), CICA (originally form Perú but currently cultivated at 2,000 m asl in Argentina) and CO-407 a lowland chileanvariety (140 m asl). In general, our data showed that gs is an important variable in the net CO2 assimilation (Amax) but this control magnitude depends on the considered variety. Highest (31 µmol m-2 s-1 ) and lowest (19 µmol m-2 s-1) Amax values were recorded for CICA and CO-407 varieties. Regarding the carboxylic capacity and intrinsic water use efficiency (iWUE), it may be inferred from the obtained data, that the high altitude varieties (Sayaña and Kancolla) have both, the highest iWUE and carboxylation capacity in relation to other varieties from middle and low altitude (CO-407 and CICA). SLA value did not vary significantly among the studied varieties. Every analysed variety was amphiestomatic with higher stomatal density (SD) on the lower epidermis. A positive linear correlation between Amax and SD was found. The obtained results provide data of unquestionable biological value, which can be useful to varietal breeding studies in middle and high mountain environments.

Downloads

Download data is not yet available.

References

Abrams M. D. 1993. Genotypic and phenotypic variation as stress adaptations in temperate tree species: a review of several case studies. Tree Physiology 14: 833-842.

Ainsworth E. A., Davey P. A., Hymus G. J., Osborne C. P., Rogers A., Blum H., Nösberger J., Long S. P. 2003. Is stimulation of leaf photosynthesis by elevated carbon doxide concentration maintained in the long term? A test with Lolium perenne grown for 10 years at two nitrogen fertilization levels under Free Air CO2 Enrichment (FACE). Plant, Cell and Environment 26 (5): 705-714.

Centritto M., Lauteri M., Monteverdi M. V., Serraj R. 2009. Leaf gas exchange, carbon isotope discrimination, and grain yield in contrasting rice genotypes subjected to water deficits during the reproductive stage. Journal of Experimental Botany 60 (8): 2325–2339.

Croxdale J. L., Johnson J. B., Smith J., Yandell B. 1992. Stomatal patterning in Tradescantia: an evaluation of the cell lineage theory. Developmental Biology 167: 39-46.

Croxdale J. L. 2000. Stomatal patterning in angiosperms. American Journal of Botany 87(8): 1069-1080.

Chapelle E. W., Kim M. S., McMurtrey J. E. III. 1992. Ratio analysis of reflectance spectra (RARS): an algorithm for the remote estimation of the concentrations of chlorophyll a, chlorophyll b, and carotenoids in soybean leaves. Remote Sensing of Environment 39 (3): 239-247.

D’Ambrogio de Argüeso, A. 1986. Manual de Técnicas en Histología Vegetal. Editora Hemisferio Sur S. A., Buenos Aires, Argentina. 83 pp.

Dizeo de Strittmater, C. G. 1973. Nueva técnica de diafanización. Boletín de la Sociedad Argentina de Botánica 15 (1): 126-129.

Eisa S., Hussin S., Geissler N., Koyro H. W. 2012. Effect of NaCl salinity on water relations, photosynthesis and chemical composition of Quinoa (Chenopodium quinoa Willd.) as a potential cash crop halophyte. Australian Journal of Crop Science 6 (2): 357-368.

Farquhar G. D., Sharkey T. D. 1982. Stomatal conductances and photosynthesis. Annual Review of Plant Physiology 33: 317-345.

Galmés J., Medrano H., Flexas J. 2007. Photosynthetic limitations in response to water stress and recovery in Mediterranean plants with different growth forms. New Phytologist 175 (1): 81–93.

González J. A, Bruno M., Valoy M., Prado F. E. 2010. Genotypic variation of gas exchange parameters and leaf stable carbon and nitrogen isotopes in ten quinoa cultivars grown under drought. Journal of Agronomy and Crop Science 197 (2): 81-93.

González J. A., Konishi Y., Bruno M., Valoy M., Prado F.E. 2011. Interrelationships among seed yield, total protein and amino acid composition of ten quinoa (Chenopodium quinoa) cultivars from two different agroecological regions. Journal of the Science of Food and Agriculture 92 (6): 1222-1229.

Hilal M., Parrado M. F., Rosa M., Gallardo M., Massa E. M., González J. A., Prado F. E. 2004. Epidermal lignin deposition in quinoa cotyledons in response to UV-B radiation. Photochemistry and Photobiology 79 (2): 205-210.

Ivanova L. A. 2014. Adaptive Features of Leaf Structure in Plants of Different Ecological Groups. Russian Journal of Ecology 45 (2): 107–115.

Jacobsen S. E., Liu F., Jensen C. R. 2009. Does root-sourced ABA play a role for regulation of stomata under drought in quinoa (Chenopodium quinoa Willd.). Scientia Horticulturae 122: 281-287.

Lawlor D. W. 2001. Photosynthesis. 3rd edn. BIOS Scientific Publishers Ltd, New York, USA. 386 pp.

Liu F., Stützel H. 2004. Biomass partitioning, specific leaf area, and water use efficiency of vegetable amaranth (Amaranthus spp.) in response to drought stress. Scientia Horticulturae 102 (1): 15-27.

Misra S. C., Shinde S., Geerts S., Rao V. S., Monneveux P. 2009. Can carbon isotope discrimination and ash content predict grain yield and water use efficiency in wheat ?. Agricultural Water Management 97(1): 57-65.

Mirecki R., Teramura A. H. 1984. Effects of ultraviolet-B irradiance on soybean. V. The dependence of plants sensitivity on the photosynthetic photon flux density during and after leaf expansion. Plant Physiology 74 (3): 475–480.

Morgan J. A., LeCain D. R. 1991. Leaf gas exchange and related leaf traits among 15 winter wheat genotypes. Crop Science 31(2): 443-448.

Palliotti, A, Cartechini A. 2001. Photosynthetic light response curvesin relation to illumination of adaxial and abaxial surfaces of sun and shade leaves of Vitis Parkhust D. F. 1978. The Adaptive Significance of Stomatal Occurrence on One or Both Surfaces of Leaves. Journal of Ecology 66 (2): 367-386.

Proietti P., Pallioti A. 1997. Contribution of the adaxial and abaxial surfaces of olive leaves to photosynthesis. Photosynthetica 33 (1): 63-69.

Radoglou K. M., Jarvis P. G. 1990. Effects of CO2 enrichment on four poplar clones. II. Leaf surface properties. Annals of Botany 65: 627-632.

Tardieu F., Granier C., Muller B. 1999. Modelling leaf expansion in a fluctuating environment: are changes in specific leaf area a consequence of changes in expansión rate. New Phytologist 143 (1): 33-43.

Van den Boogaard R., Alewijnse D., Veneklaas E. J., Lambers H. 1997. Growth and water-use efficiency of 10 Triticum aestivum cultivars at different water availability in relation to allocation of biomass. Plant, Cell and Environment 20: 200-210.

Wellburn A. R. 1994. The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. Journal of Plant Physiology 144 (3): 307-313.

Wilkinson H. 1979. The plant surface (mainly leaf). En Metcalfe C.R. y Chalk L. (editores). Anatomy of Dicotyledons, Claredon Press, Oxford, London, UK, pp. 97-165.

Wong S. C., Cowan I. R., Farquhar G. D. 1979. Stomatal conductance correlates with photosynthetic capacity. Nature 282: 424-426.

Published

2014-12-01

How to Cite

González, J. A., Ponessa, G. I., Buedo, S. E., Mercado, M. I., & Prado, F. E. (2014). “Maximum photosynthetic assimilation in quinoa varieties (Chenopodium quinoa) from different geographic origins, and its relation to leaf morphology. Lilloa, 51(2), 177–193. Retrieved from https://www.lillo.org.ar/journals/index.php/lilloa/article/view/347
صندلی اداری سرور مجازی ایران Decentralized Exchange

Issue

Section

Original papers

Most read articles by the same author(s)

1 2 3 4 > >> 

Similar Articles

You may also start an advanced similarity search for this article.

فروشگاه اینترنتی صندلی اداری جوراب افزایش قد ژل افزایش قد خرید vpn خرید vpn سرور مجازی بایننس