Anatomía de hoja, tallo y raíz de Halophytum ameghinoi (Halophytaceae), especie endémica de Argentina

Authors

  • Romina D. Fernández Instituto de Morfología Vegetal, Fundación Miguel Lillo
  • Omar Varela Instituto de Ecología, Fundación Miguel Lillo
  • Patricia L. Albornoz Instituto de Morfología Vegetal, Fundación Miguel Lillo

Keywords:

Anatomy, halophyte, Halophytum ameghinoi, succulent plant

Abstract

Fernandez, Romina D.; Omar Varela; Patricia L. Albornoz. 2016. “Anato- my of the leaf, stem and root of Halophytum ameghinoi (Halophytaceae), endemic species of Argentina”. Lilloa 53 (1). Halophytes plants have developed different salinity tolerance mech- anisms, which may involve changes morphoanatomical. This study describes the anatomy of the leaf, stem and root of Halophytum ameghinoi and discusses the anatomical features with adaptive potential value to saline soils. The study material comes from two sites in the prov- ince of La Rioja, Argentina (Los Colorados and Alpasinche). We worked with fresh material and fixed in FAA and we applied conventional histological techniques. Structurally, the leaf is subcircular, equilateral and amphistomatic; with stomata paracytic, anfibraquiparacytic, and have 3-5 subsidiary cells, also it has a central parenchyma aquifer whose cells produce mucilage. The stem shows different stages of growth. The primary growth has abundant cortical and medullary parenchyma and the vascular bundles are collateral; the stem with typical secondary growth has width phloematic radios and perivascular sclerenchyma; the same is observed in secondary growth roots. The leaf as the stem and root contains numer- ous crystals of calcium oxalate. The number of crystals in the cortical parenchyma of the stem is higher in the plats of Los Colorados in correspondence with the highest concentra- tion of salts in the soil. The development the aquifer parenchyma and the formation of calcium oxalate crystals would be the most obvious features that presents H. ameghinoi on the leaf in response to soil salinity. While in stem and root, in addition to the crystals, the presence of cylinder of perivascular sclerenchyma formed by fibers with lignified walls, also contribute to the tolerance of this species to environment saline.

Downloads

Download data is not yet available.

References

Apóstolo N. M. 2005.Caracteres anatómicos de la vegetación costera del Río Salado (Noroeste de la provincia de Buenos Aires, Argentina). Boletín de la Sociedad Argentina de Botánica 40 (3-4): 215 - 227.

Aronson J. A. 1989. Haloph: A database of salt tolerant plants of the world. Tucson AZ: Arid Lands Studies. University of Arizona, Arizona, 77 pp.

Barkla B. J., Vera-Estrella R., Balderas E., Pantoja O. 2007. Mecanismos de tolerancia a la salinidad en plantas. Biotecnología 14: 263-272.

Benavides A., Dávila R., Rincón F., Ramírez H., Fuentes L. 2004. Respuesta de la densidad estomática y de células tabulares de maíces bajo estrés por NaCl. URL: <http://.uaaa.mx/DirInv/Result_Pio4/MEMORIA_2004/

IngAgrícola/ABenavides. Mendoza 2.doc. 182-186 p>. Consulta: noviembre de 2015.

Bercu R. M., Făgăraş L. B. 2012. Anatomical features of Aster tripolium L. (Asteraceae) to saline environments. Annals of the Romanian Society for Cell Biology 17 (1): 271.

Céccoli G., Ramos J. C., Ortega L. I., Acosta J. M., Perreta M. G. 2011. Salinity induced anatomical and morphological changes in Chloris gayana Kunth roots. Biocell 35 (1): 9-17.

Chávez L., González L. M. 2009. Mecanismos moleculares involucrados en la tolerancia de las plantas a la salinidad. ITEA 105 (4): 231-256.

D'Ambrogio de Argüeso A. 1986. Manual de Técnicas en Histología Vegetal. Ed. Hemisferio Sur, Buenos Aires, 83 pp.

Di Fulvio T. E. 1975. Estomatogénesis en Halophytum ameghinoi (Halophytaceae). Kurtziana 8: 17- 29.

Dilcher D. L. 1974. Approaches to the identification of angiosperm leaves. The Botanical Review 40: 1-157.

Di Rienzo J. A., Casanoves F., Balzarini M. G., Gonzalez L., Tablada M., Robledo C. W. InfoStat versión 2013. Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina. URL: <http://www.infostat.com.ar>. Consulta: noviembre de 2015.

Ferreira R., Tavora F., Ferreyra F. 2001. Dry matter partitioning and mineral composition of roots, stems and leaves of guava grown under salt stress conditions. Pesquisa Agropecuária Brasileira 36 (1): 79-88.

Flowers T. J. 1985. Physiology of halophytes. Plant Soil 89: 41-56.

Flowers T. J., Colmer T. D. 2008. Salinity tolerance in halophytes. New Phytologist 179: 945-963.

Gibson A. C. 1978. Rayless secondary xylem of Halophytum. Bulletin of the Torrey Botanical Club 105 (1): 39-44.

Grigore M. N., Toma C. 2008. Ecological anatomy investigations related to some halophyte species from Moldavia. Romanian Journal of Biology - Plant Biology 53 (1): 27-31.

Hagemeyer J. 1997. Salinization a problem of global scale. En: Prassad, M (editor), Plant ecophysiology, John Willey y Sons Inc., New York, pp. 173-205.

Huang J., Redman R. E. 1995. Response of growth, morphology and anatomy to salinity and calcium supply in cultivated and wild barley. Canadian Journal of Botany 73: 1859-1866.

Kiesling R. 1994. Flora de San Juan. República Argentina. Vol. I: Pteridófitas, Gymnospermas, Dicotiledóneas Dialipétalas (Salicáceas a Leguminosas). Vásquez y Mazzini (editores). Buenos Aires, pp. 111-136.

Mantri N, Patade V., Penna S., Ford R., Pang E. 2012. Abiotic Stress Responses. In Plants: Present and Future. En: P. Ahmad, M.N.V. Prasad (editores), Abiotic Stress Responses in Plants - Metabolism, Productivity and Sustainability. Springer, New York, pp. 1-19.

Parida A. K., Das A. B. 2005. Salt tolerance and salinity effects on plants: a review. Ecotoxicology and Environmental Safety 60: 324-349.

Patakas A. 2012. Abiotic Stress-Induced Morphological and Anatomical Changes. In Plants. En: P. Ahmad, M.N.V. Prasad (editores), Abiotic Stress Responses in Plants - Metabolism, Productivity and Sustainability. Springer, New York. pp 21-39.

Poblete V., Campos V., Gonzalez l., Montenegro G. 1991. Anatomic leaf adaptations in vascular plants of a salt marsh in the Atacama desert (Chile). Revista Sociedad Chilena de Historia Natural 64: 65-75.

Poljakoff-Mayber A. 1975. Morphological and anatomical changes in plants as a response to salinity stress. En: Poljakoff- Mayber, A. y J. Gale (editores), Plant in saline environments Springer Verlag, New York, pp. 97-117.

Popp M. 1995. Salt resistance in herbaceous halophytes and mangroves. Progress in Botany 56: 416-429.

Pozner R., Cocucci A. 2006. Floral structure, anther development, and pollen dispersal of Halophytum ameghinoi (Halophytaceae). International Journal of Plant Sciences 167 (6): 1091-1098.

Rains D. W. 1972. Salt transport by plants in relation to salinity. Annual Review of Plant Physiology 23: 367-388.

Ramos J., Perrata M., Tivano J., Vegetti A. 2004. Variaciones anatómicas en la raíz de Pappophorum philippianum inducidas por salinidad. Phyton 73: 103-109.

Salas J., Sanabria M. E., Pire R. 2001. Variación en el índice y la densidad estomática de plantas de tomate (Lycopersicom esculentum Mill.) sometidas a tratamientos salinos. Bioagro 13: 99-104.

Soriano A. 1946. Halophytaceae nueva familia de orden Centrospermae. Notas Museo La Plata 11: 161-175.

Soriano A. 1984. Halophytaceae. Boletín de la Sociedad Argentina de Botánica 23: 161.

Waisel Y. 1972. Biology of halophytes. Academic Press, New York and London, 379 pp.

Wickens G. 1998. Ecophysiology of economic plants in arid and semi-arid lands. Springer Verlag, Berlin, Germany, 343 pp.

Published

2016-06-07

How to Cite

Fernández, R. D., Varela, O., & Albornoz, P. L. (2016). Anatomía de hoja, tallo y raíz de Halophytum ameghinoi (Halophytaceae), especie endémica de Argentina. Lilloa, 53(1), 23–31. Retrieved from https://www.lillo.org.ar/journals/index.php/lilloa/article/view/119
صندلی اداری سرور مجازی ایران Decentralized Exchange

Issue

Section

Original papers

Most read articles by the same author(s)

1 2 3 > >> 
فروشگاه اینترنتی صندلی اداری جوراب افزایش قد ژل افزایش قد خرید vpn خرید vpn سرور مجازی بایننس