El perfil fitoquímico y los análisis in silico revelan características similares a las de los fármacos en el musgo Brachythecium salebrosum (Bryophyta, Brachytheciaceae)
Avaliação do potencial semelhante ao de uma droga no musgo Brachythecium salebrosum (Bryophyta, Brachytheciaceae)
DOI:

Palabras clave:
ligando, extracto metanólico, fitoquímica, terapéutica, Briofitas, acoplamientoResumen
Las briofitas se han utilizado desde hace mucho tiempo como medicina
tradicional en muchos países asiáticos, en particular en China e India. Se sabe que poseen una variedad de fitoquímicos con reconocidas propiedades medicinales. Si bien las briofitas son ampliamente reconocidas por su potencial medicinal, el musgo Brachythecium salebrosum se seleccionó para este estudio debido a su adaptabilidad ecológica y a la
ausencia de investigaciones fitoquímicas y farmacológicas detalladas en esta especie. Por lo tanto, en el presente estudio se empleó cromatografía de gases-espectrometría de masas (GC-MS) junto con un enfoque bioinformático para investigar los componentes fitoquímicos y sus afinidades farmacológicas en este musgo. Se identificaron 55 compuestos fitoquímicos, de los cuales cuatro compuestos principales —fenol, fitol, 2,4-di-terc-butilfenol y ácido n-hexadecanoico— representan el 48,11 % del total. Cabe destacar que también se reportan ácidos grasos de número impar, poco frecuentes en plantas. El análisis de acoplamiento molecular y los estudios farmacocinéticos de estos cuatro compuestos revelaron sólidas propiedades farmacológicas. El estudio exploró la participación de varios genes en diversas vías metabólicas y su asociación con diferentes enfermedades. Los hallazgos sugieren que B. salebrosum contiene un reservorio de compuestos de importancia medicinal con características farmacológicas. Hasta donde sabemos, este estudio constituye el primer análisis exhaustivo del perfil fitoquímico vinculado con estudios farmacocinéticos de este taxón. La presencia de nuevos sitios de unión como los informados en este estudio allanará aún más el camino para el descubrimiento y desarrollo de fármacos.
Descargas
Citas
Asakawa, Y. & Ludwiczuk, A. (2017). Chemical constituents of bryophytes: structures and biological activity. Journal of natural products 81 (3): 641-660. https://doi.org/10.1021/acs.jnatprod.6b01046
Asakawa, Y., Ludwiczuk, A. & Nagashima, F. (2013). Phytochemical and biological studies of bryophytes. Phytochemistry 91: 52-80. https://doi.org/10.1016/j.phytochem.2012.04.012
Bansal, P. & Nath, V. (2013). Current Status of Genus Bryum Hedw. in Eastern Himalaya, India. Taiwania 58 (3): 205-212.
Biswas, S. C., Sanphui, P., Chatterjee, N., Kemeny, S. & Greene, L. A. (2017). Cdc25A phosphatase: a key cell cycle protein that regulates neuron death in disease and development. Cell Death & Disease 8 ( 3): e2692. https://doi.org/10.1038/cddis.2017.115
Burley, S. K., Bhikadiya, C., Bi, C., Bittrich, S., Chen, L., Crichlow, G. V.,... & Zhuravleva, M. (2021). RCSB Protein Data Bank: powerful new tools for exploring 3D structures of biological macromolecules for basic and applied research and education in fundamental biology, biomedicine, biotechnology, bioengineering and energy sciences. Nucleic acids research 49 (D1): D437-D451. https://doi.org/10.1093/nar/gkaa1038
Chandra, S., Chandra, D., Barh, A., Pandey, R. K. & Sharma, I. P. (2017). Bryophytes: Hoard of remedies, an ethno-medicinal review. Journal of traditional and complementary medicine 7 (1): 94-98. https://doi.org/10.1016/j.jtcme.2016.01.007
Chen, Y. & Dai, G. (2015). Acaricidal, repellent, and oviposition-deterrent activities of 2, 4-di-tert-butylphenol and ethyl oleate against the carmine spider mite Tetranychus cinnabarinus. Journal of Pest Science 88: 645-655. https://doi.org/10.1007/s10340-015-0646-2
Chopra, R. S. (1975). Taxonomy of Indian mosses: an introduction. CSIR, New Delhi: Printing and information directorate.
Cianciullo, P., Maresca, V., Sorbo, S. & Basile, A. (2021). Antioxidant and antibacterial properties of extracts and bioactive compounds in bryophytes. Applied Sciences 12 (1): 160. https://doi.org/10.3390/app12010160
Daina, A., Michielin, O. & Zoete, V. (2017). SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific reports 7 (1): 42717. https://doi.org/10.1038/srep42717
Daina, A., Michielin, O. & Zoete, V. (2019). SwissTargetPrediction: updated data and new features for efficient prediction of protein targets of small molecules. Nucleic acids research 47 (W1): W357-W364. https://doi.org/10.1093/nar/gkz382
de Moraes, J., de Oliveira, R. N., Costa, J. P., Junior, A. L., de Sousa, D. P., Freitas, R. M., ... & Pinto, P. L. (2014). Phytol, a diterpene alcohol from chlorophyll, as a drug against neglected tropical disease Schistosomiasis mansoni. PLoS neglected tropical diseases 8 (1): e2617. https://doi.org/10.1371/journal.pntd.0002617
Di Fiore, A., Monti, D. M., Scaloni, A., De Simone, G. & Monti, S. M. (2018). Protective role of carbonic anhydrases III and VII in cellular defense mechanisms upon redox unbalance. Oxidative medicine and cellular longevity: 2018306. https://doi.org/10.1155/2018/2018306
Dziwak, M., Wróblewska, K., Szumny, A. & Galek, R. (2022). Modern use of bryophytes as a source of secondary metabolites. Agronomy 12 (6): 1456. https://doi.org/10.3390/agronomy12061456
Furuhashi, M., Saitoh, S., Shimamoto, K. & Miura, T. (2014). Fatty acid-binding protein 4 (FABP4): pathophysiological insights and potent clinical biomarker of metabolic and cardiovascular diseases. Clinical medicine insights: cardiology 8: CMC-S17067. https://doi.org/10.4137/CMC.S17067
Gangulee, H. C. (1980). Mosses of eastern India and adjacent regions, fasc. 7, Hypnobryales (Leskeineae), Calcutta. -Published by the author, Eastend printers. pp. 1547-1752.
Garcia-Moreno, A., López-Domínguez, R., Villatoro-García, J. A., Ramirez-Mena, A., Aparicio-Puerta, E., Hackenberg, M., ... & Carmona-Saez, P. (2022). Functional enrichment analysis of regulatory elements. Biomedicines 10 (3): 590. https://doi.org/10.3390/biomedicines10030590
Gharpure, K. M., Pradeep, S., Sans, M., Rupaimoole, R., Ivan, C., Wu, S. Y., ... & Sood, A. K. (2018). FABP4 as a key determinant of metastatic potential of ovarian cancer. Nature communications 9 (1): 1-14. https://doi.org/10.1038/s41467-018-04987-y
González, J. M. & Fisher, S. Z. (2015). Structural analysis of ibuprofen binding to human adipocyte fatty-acid binding protein (FABP4). Structural Biology and Crystallization Communications 71 (2): 163-170. https://doi.org/10.1107/S2053230X14027897
Greeshma, G. M., Manoj, G. S. & Murugan, K. (2017). Insight into pharmaceutical importance of bryophytes. Kongunadu Research Journal 4 (2): 84-88. https://doi.org/10.26524/krj208
Gutbrod, P., Yang, W., Grujicic, G. V., Peisker, H., Gutbrod, K., Du, L. F. & Dörmann, P. (2021). Phytol derived from chlorophyll hydrolysis in plants is metabolized via phytenal. Journal of Biological Chemistry 296. https://doi.org/10.1016/j.jbc.2021.100530
Jakubowski, M., Szahidewicz-Krupska, E. & Doroszko, A. (2018). The human carbonic anhydrase II in platelets: an underestimated field of its activity. BioMed research international. https://doi.org/10.1155/2018/4548353
Jia, X. & Han, X. (2023). Targeting androgen receptor degradation with PROTACs from bench to bedside. Biomedicine & Pharmacotherapy 158: 114112. https://doi.org/10.1016/j.biopha.2022.114112
Joshi, S., Singh, S., Sharma, R., Vats, S. & Alam, A. (2023). Gas chromatography-mass spectrometry (GC–MS) profiling of aqueous methanol fraction of Plagiochasma appendiculatum Lehm. & Lindenb. and Sphagnum fimbriatum Wilson for probable antiviral potential. Vegetos 36 (1): 87-92.
Kanehisa, M., Furumichi, M., Sato, Y., Kawashima, M. & Ishiguro-Watanabe, M. (2023). KEGG for taxonomy-based analysis of pathways and genomes. Nucleic acids research 51 (D1): D587-D592. https://doi.org/10.1093/nar/gkac963
Katara, P. (2013). Role of bioinformatics and pharmacogenomics in drug discovery and development process. Network Modeling Analysis in Health Informatics and Bioinformatics 2: 225-230. https://doi.org/10.1007/s13721-013-0039-5
Kersten, S. & Stienstra, R. (2017). The role and regulation of the peroxisome proliferator activated receptor alpha in human liver. Biochimie 136: 75-84. https://doi.org/10.1016/j.biochi.2016.12.019
Kim, S., Chen, J., Cheng, T., Gindulyte, A., He, J., He, S., ... & Bolton, E. E. (2021). PubChem in 2021: new data content and improved web interfaces. Nucleic acids research 49 (D1): D1388-D1395. https://doi.org/10.1093/nar/gkaa971
Kingsbury, D. T. (1997). Bioinformatics in drug discovery. Drug development research 41 (3?4): 120-128.
Klavina, L., Springe, G., Nikolajeva, V., Martsinkevich, I., Nakurte, I., Dzabijeva, D. & Steinberga, I. (2015). Chemical composition analysis, antimicrobial activity and cytotoxicity screening of moss extracts (moss phytochemistry). Molecules 20 (9): 17221-17243. https://doi.org/10.3390/molecules200917221
Koponen, T. & Li, X. J. (1992). Mosses from Kunming City and its surroundings, Yunnan Province, China. Finnish Bryological Society [Place Unknown].
Lu, Y., Eiriksson, F. F., Thorsteinsdóttir, M. & Simonsen, H. T. (2019). Valuable fatty acids in bryophytes—production, biosynthesis, analysis and applications. Plants 8 (11): 524. https://doi.org/10.3390/plants8110524
Martínez-Abaigar, J. & Núñez-Olivera, E. (2021). Novel biotechnological substances from bryophytes. In: Sinha, R.P. & H?der, D.P. (eds), Natural bioactive compounds (pp. 233-248). Academic Press, USA. https://doi.org/10.1016/B978-0-12-820655-3.00011-2
Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S. & Olson, A. J. (2009). AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of computational chemistry 30 (16): 2785-2791. https://doi.org/10.1002/jcc.21256
Nair, R. V., Jayasree, D. V., Biju, P. G. & Baby, S. (2020). Anti-inflammatory and anticancer activities of erythrodiol-3-acetate and 2, 4-di-tert-butylphenol isolated from Humboldtia unijuga. Natural product research 34 (16): 2319-2322. https://doi.org/10.1080/14786419.2018.1531406
Ouellette, V., Côté, M. F., Gaudreault, R. C., Tajmir-Riahi, H. A. & Bérubé, G. (2019). Second-generation testosterone-platinum (II) hybrids for site-specific treatment of androgen receptor positive prostate cancer: Design, synthesis and antiproliferative activity. European journal of medicinal chemistry 179: 660-666. https://doi.org/10.1016/j.ejmech.2019.06.090
Petkova, Z., Teneva, O., Antova, G., Angelova-Romova, M., Gecheva, G. & Dimitrova-Dyulgerova, I. (2023). Chemical Composition, Lipid-Soluble Bioactive Compounds and Potential Health Benefits of the Moss Hypnum cupressiforme Hedw. Plants 12 (24): 4190. https://doi.org/10.3390/plants12244190
Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C. & Ferrin, T. E. (2004). UCSF Chimera—a visualization system for exploratory research and analysis. Journal of computational chemistry 25 (13): 1605-1612. https://doi.org/10.1002/jcc.20084
Piñero-González, J., Queralt-Rosinach, N., Bravo, A., Deu-Pons, J., Bauer-Mehren, A., Baron, M., ... & Furlong, L. I. (2015). DisGeNET: a discovery platform for the dynamical exploration of human diseases and their genes. Database bav028: 1-17. http://dx.doi.org/10.1093/database/bav028
Semerjyan, I., Semerjyan, G., Semerjyan, H. & Trchounian, A. (2020). Antibacterial Properties and Flavonoids Content of Some Mosses Common in Armenia: Antibacterial Properties and Flavonoids Content of Some Mosses Common in Armenia. Iranian Journal of Pharmaceutical Sciences 16 (4): 31-42.
Selmy, A. H., Hegazy, M. M., El-Hela, A. A., Saleh, A. M. & El-Hamouly, M. M. (2023). In Vitroand in Silico studies of Neophytadiene; A Diterpene Isolated Fromaeschynomene Elaphroxylon (Guill. &Perr.) Taub. as Apoptotic Inducer. Egyptian Journal of Chemistry 66 (10): 149-161. https://dx.doi.org/10.21608/ejchem.2023.178261.7296
Taher, E. S., Banwell, M. G., Buckler, J. N., Yan, Q. & Lan, P. (2018). The Exploitation of Enzymatically?Derived cis?1, 2?Dihydrocatechols and Related Compounds in the Synthesis of Biologically Active Natural Products. The Chemical Record 18 (2): 239-264. https://doi.org/10.1002/tcr.201700064
Trott, O. & Olson, A. J. (2010). AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of computational chemistry 31 (2): 455-461. https://doi.org/10.1002/jcc.21334
Wang, Y., Liu, Y., Zhang, M., Lv, L., Zhang, X., Zhang, P. & Zhou, Y. (2019). Inhibition of PTGS1 promotes osteogenic differentiation of adipose-derived stem cells by suppressing NF-kB signaling. Stem Cell Research & Therapy 10: 1-10. https://doi.org/10.1186/s13287-019-1167-3
Xia, X. (2017). Bioinformatics and drug discovery. Current topics in medicinal chemistry 17 (15): 1709-1726. https://doi.org/10.2174/1568026617666161116143440
Yu, J., Zhang, L., Yan, G., Zhou, P., Cao, C., Zhou, F., ... & Chen, Y. (2019). Discovery and biological evaluation of novel androgen receptor antagonist for castration-resistant prostate cancer. European Journal of Medicinal Chemistry 171: 265-281. https://doi.org/10.1016/j.ejmech.2019.03.041
Zeng, J., Sauter, E. R. & Li, B. (2020). FABP4: a new player in obesity-associated breast cancer. Trends in molecular medicine 26 (5): 437-440. https://doi.org/10.1016/j.molmed.2020.03.004
Zhao, F., Wang, P., Lucardi, R. D., Su, Z. & Li, S. (2020). Natural sources and bioactivities of 2, 4-di-tert-butylphenol and its analogs. Toxins 12(1): 35. https://doi.org/10.3390/toxins12010035
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 1900 Lilloa

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.