El perfil fitoquímico y los análisis in silico revelan características similares a las de los fármacos en el musgo Brachythecium salebrosum (Bryophyta, Brachytheciaceae)

Avaliação do potencial semelhante ao de uma droga no musgo Brachythecium salebrosum (Bryophyta, Brachytheciaceae)

Autores/as

DOI:

https://doi.org/10.30550/j.lil/2164

Palabras clave:

ligando, extracto metanólico, fitoquímica, terapéutica, Briofitas, acoplamiento

Resumen

Las briofitas se han utilizado desde hace mucho tiempo como medicina
tradicional en muchos países asiáticos, en particular en China e  India. Se sabe que poseen una variedad de fitoquímicos con reconocidas propiedades medicinales. Si bien las briofitas son ampliamente reconocidas por su potencial medicinal, el musgo  Brachythecium salebrosum se seleccionó para este estudio debido a su adaptabilidad ecológica y a la
ausencia de investigaciones fitoquímicas y farmacológicas detalladas en esta especie. Por lo tanto, en el presente estudio se empleó cromatografía de gases-espectrometría de masas (GC-MS) junto con un enfoque bioinformático para investigar los componentes fitoquímicos y sus afinidades farmacológicas en este musgo. Se identificaron 55 compuestos fitoquímicos, de los cuales cuatro compuestos principales —fenol, fitol, 2,4-di-terc-butilfenol y ácido n-hexadecanoico— representan el 48,11 % del total. Cabe destacar que también se reportan ácidos grasos de número impar, poco frecuentes en plantas. El análisis de acoplamiento molecular y los estudios farmacocinéticos de estos cuatro compuestos revelaron sólidas propiedades farmacológicas. El estudio exploró la participación de varios genes en diversas vías metabólicas y su asociación con diferentes enfermedades. Los hallazgos sugieren que B. salebrosum contiene un reservorio de compuestos de importancia medicinal con características farmacológicas. Hasta donde sabemos, este estudio constituye el primer análisis exhaustivo del perfil fitoquímico vinculado con estudios farmacocinéticos de este taxón. La presencia de nuevos sitios de unión como los informados en este estudio allanará aún más el camino para el descubrimiento y desarrollo de fármacos. 

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Asakawa, Y. & Ludwiczuk, A. (2017). Chemical constituents of bryophytes: structures and biological activity. Journal of natural products 81 (3): 641-660. https://doi.org/10.1021/acs.jnatprod.6b01046

Asakawa, Y., Ludwiczuk, A. & Nagashima, F. (2013). Phytochemical and biological studies of bryophytes. Phytochemistry 91: 52-80. https://doi.org/10.1016/j.phytochem.2012.04.012

Bansal, P. & Nath, V. (2013). Current Status of Genus Bryum Hedw. in Eastern Himalaya, India. Taiwania 58 (3): 205-212.

Biswas, S. C., Sanphui, P., Chatterjee, N., Kemeny, S. & Greene, L. A. (2017). Cdc25A phosphatase: a key cell cycle protein that regulates neuron death in disease and development. Cell Death & Disease 8 ( 3): e2692. https://doi.org/10.1038/cddis.2017.115

Burley, S. K., Bhikadiya, C., Bi, C., Bittrich, S., Chen, L., Crichlow, G. V.,... & Zhuravleva, M. (2021). RCSB Protein Data Bank: powerful new tools for exploring 3D structures of biological macromolecules for basic and applied research and education in fundamental biology, biomedicine, biotechnology, bioengineering and energy sciences. Nucleic acids research 49 (D1): D437-D451. https://doi.org/10.1093/nar/gkaa1038

Chandra, S., Chandra, D., Barh, A., Pandey, R. K. & Sharma, I. P. (2017). Bryophytes: Hoard of remedies, an ethno-medicinal review. Journal of traditional and complementary medicine 7 (1): 94-98. https://doi.org/10.1016/j.jtcme.2016.01.007

Chen, Y. & Dai, G. (2015). Acaricidal, repellent, and oviposition-deterrent activities of 2, 4-di-tert-butylphenol and ethyl oleate against the carmine spider mite Tetranychus cinnabarinus. Journal of Pest Science 88: 645-655. https://doi.org/10.1007/s10340-015-0646-2

Chopra, R. S. (1975). Taxonomy of Indian mosses: an introduction. CSIR, New Delhi: Printing and information directorate.

Cianciullo, P., Maresca, V., Sorbo, S. & Basile, A. (2021). Antioxidant and antibacterial properties of extracts and bioactive compounds in bryophytes. Applied Sciences 12 (1): 160. https://doi.org/10.3390/app12010160

Daina, A., Michielin, O. & Zoete, V. (2017). SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific reports 7 (1): 42717. https://doi.org/10.1038/srep42717

Daina, A., Michielin, O. & Zoete, V. (2019). SwissTargetPrediction: updated data and new features for efficient prediction of protein targets of small molecules. Nucleic acids research 47 (W1): W357-W364. https://doi.org/10.1093/nar/gkz382

de Moraes, J., de Oliveira, R. N., Costa, J. P., Junior, A. L., de Sousa, D. P., Freitas, R. M., ... & Pinto, P. L. (2014). Phytol, a diterpene alcohol from chlorophyll, as a drug against neglected tropical disease Schistosomiasis mansoni. PLoS neglected tropical diseases 8 (1): e2617. https://doi.org/10.1371/journal.pntd.0002617

Di Fiore, A., Monti, D. M., Scaloni, A., De Simone, G. & Monti, S. M. (2018). Protective role of carbonic anhydrases III and VII in cellular defense mechanisms upon redox unbalance. Oxidative medicine and cellular longevity: 2018306. https://doi.org/10.1155/2018/2018306

Dziwak, M., Wróblewska, K., Szumny, A. & Galek, R. (2022). Modern use of bryophytes as a source of secondary metabolites. Agronomy 12 (6): 1456. https://doi.org/10.3390/agronomy12061456

Furuhashi, M., Saitoh, S., Shimamoto, K. & Miura, T. (2014). Fatty acid-binding protein 4 (FABP4): pathophysiological insights and potent clinical biomarker of metabolic and cardiovascular diseases. Clinical medicine insights: cardiology 8: CMC-S17067. https://doi.org/10.4137/CMC.S17067

Gangulee, H. C. (1980). Mosses of eastern India and adjacent regions, fasc. 7, Hypnobryales (Leskeineae), Calcutta. -Published by the author, Eastend printers. pp. 1547-1752.

Garcia-Moreno, A., López-Domínguez, R., Villatoro-García, J. A., Ramirez-Mena, A., Aparicio-Puerta, E., Hackenberg, M., ... & Carmona-Saez, P. (2022). Functional enrichment analysis of regulatory elements. Biomedicines 10 (3): 590. https://doi.org/10.3390/biomedicines10030590

Gharpure, K. M., Pradeep, S., Sans, M., Rupaimoole, R., Ivan, C., Wu, S. Y., ... & Sood, A. K. (2018). FABP4 as a key determinant of metastatic potential of ovarian cancer. Nature communications 9 (1): 1-14. https://doi.org/10.1038/s41467-018-04987-y

González, J. M. & Fisher, S. Z. (2015). Structural analysis of ibuprofen binding to human adipocyte fatty-acid binding protein (FABP4). Structural Biology and Crystallization Communications 71 (2): 163-170. https://doi.org/10.1107/S2053230X14027897

Greeshma, G. M., Manoj, G. S. & Murugan, K. (2017). Insight into pharmaceutical importance of bryophytes. Kongunadu Research Journal 4 (2): 84-88. https://doi.org/10.26524/krj208

Gutbrod, P., Yang, W., Grujicic, G. V., Peisker, H., Gutbrod, K., Du, L. F. & Dörmann, P. (2021). Phytol derived from chlorophyll hydrolysis in plants is metabolized via phytenal. Journal of Biological Chemistry 296. https://doi.org/10.1016/j.jbc.2021.100530

Jakubowski, M., Szahidewicz-Krupska, E. & Doroszko, A. (2018). The human carbonic anhydrase II in platelets: an underestimated field of its activity. BioMed research international. https://doi.org/10.1155/2018/4548353

Jia, X. & Han, X. (2023). Targeting androgen receptor degradation with PROTACs from bench to bedside. Biomedicine & Pharmacotherapy 158: 114112. https://doi.org/10.1016/j.biopha.2022.114112

Joshi, S., Singh, S., Sharma, R., Vats, S. & Alam, A. (2023). Gas chromatography-mass spectrometry (GC–MS) profiling of aqueous methanol fraction of Plagiochasma appendiculatum Lehm. & Lindenb. and Sphagnum fimbriatum Wilson for probable antiviral potential. Vegetos 36 (1): 87-92.

Kanehisa, M., Furumichi, M., Sato, Y., Kawashima, M. & Ishiguro-Watanabe, M. (2023). KEGG for taxonomy-based analysis of pathways and genomes. Nucleic acids research 51 (D1): D587-D592. https://doi.org/10.1093/nar/gkac963

Katara, P. (2013). Role of bioinformatics and pharmacogenomics in drug discovery and development process. Network Modeling Analysis in Health Informatics and Bioinformatics 2: 225-230. https://doi.org/10.1007/s13721-013-0039-5

Kersten, S. & Stienstra, R. (2017). The role and regulation of the peroxisome proliferator activated receptor alpha in human liver. Biochimie 136: 75-84. https://doi.org/10.1016/j.biochi.2016.12.019

Kim, S., Chen, J., Cheng, T., Gindulyte, A., He, J., He, S., ... & Bolton, E. E. (2021). PubChem in 2021: new data content and improved web interfaces. Nucleic acids research 49 (D1): D1388-D1395. https://doi.org/10.1093/nar/gkaa971

Kingsbury, D. T. (1997). Bioinformatics in drug discovery. Drug development research 41 (3?4): 120-128.

Klavina, L., Springe, G., Nikolajeva, V., Martsinkevich, I., Nakurte, I., Dzabijeva, D. & Steinberga, I. (2015). Chemical composition analysis, antimicrobial activity and cytotoxicity screening of moss extracts (moss phytochemistry). Molecules 20 (9): 17221-17243. https://doi.org/10.3390/molecules200917221

Koponen, T. & Li, X. J. (1992). Mosses from Kunming City and its surroundings, Yunnan Province, China. Finnish Bryological Society [Place Unknown].

Lu, Y., Eiriksson, F. F., Thorsteinsdóttir, M. & Simonsen, H. T. (2019). Valuable fatty acids in bryophytes—production, biosynthesis, analysis and applications. Plants 8 (11): 524. https://doi.org/10.3390/plants8110524

Martínez-Abaigar, J. & Núñez-Olivera, E. (2021). Novel biotechnological substances from bryophytes. In: Sinha, R.P. & H?der, D.P. (eds), Natural bioactive compounds (pp. 233-248). Academic Press, USA. https://doi.org/10.1016/B978-0-12-820655-3.00011-2

Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S. & Olson, A. J. (2009). AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of computational chemistry 30 (16): 2785-2791. https://doi.org/10.1002/jcc.21256

Nair, R. V., Jayasree, D. V., Biju, P. G. & Baby, S. (2020). Anti-inflammatory and anticancer activities of erythrodiol-3-acetate and 2, 4-di-tert-butylphenol isolated from Humboldtia unijuga. Natural product research 34 (16): 2319-2322. https://doi.org/10.1080/14786419.2018.1531406

Ouellette, V., Côté, M. F., Gaudreault, R. C., Tajmir-Riahi, H. A. & Bérubé, G. (2019). Second-generation testosterone-platinum (II) hybrids for site-specific treatment of androgen receptor positive prostate cancer: Design, synthesis and antiproliferative activity. European journal of medicinal chemistry 179: 660-666. https://doi.org/10.1016/j.ejmech.2019.06.090

Petkova, Z., Teneva, O., Antova, G., Angelova-Romova, M., Gecheva, G. & Dimitrova-Dyulgerova, I. (2023). Chemical Composition, Lipid-Soluble Bioactive Compounds and Potential Health Benefits of the Moss Hypnum cupressiforme Hedw. Plants 12 (24): 4190. https://doi.org/10.3390/plants12244190

Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C. & Ferrin, T. E. (2004). UCSF Chimera—a visualization system for exploratory research and analysis. Journal of computational chemistry 25 (13): 1605-1612. https://doi.org/10.1002/jcc.20084

Piñero-González, J., Queralt-Rosinach, N., Bravo, A., Deu-Pons, J., Bauer-Mehren, A., Baron, M., ... & Furlong, L. I. (2015). DisGeNET: a discovery platform for the dynamical exploration of human diseases and their genes. Database bav028: 1-17. http://dx.doi.org/10.1093/database/bav028

Semerjyan, I., Semerjyan, G., Semerjyan, H. & Trchounian, A. (2020). Antibacterial Properties and Flavonoids Content of Some Mosses Common in Armenia: Antibacterial Properties and Flavonoids Content of Some Mosses Common in Armenia. Iranian Journal of Pharmaceutical Sciences 16 (4): 31-42.

Selmy, A. H., Hegazy, M. M., El-Hela, A. A., Saleh, A. M. & El-Hamouly, M. M. (2023). In Vitroand in Silico studies of Neophytadiene; A Diterpene Isolated Fromaeschynomene Elaphroxylon (Guill. &Perr.) Taub. as Apoptotic Inducer. Egyptian Journal of Chemistry 66 (10): 149-161. https://dx.doi.org/10.21608/ejchem.2023.178261.7296

Taher, E. S., Banwell, M. G., Buckler, J. N., Yan, Q. & Lan, P. (2018). The Exploitation of Enzymatically?Derived cis?1, 2?Dihydrocatechols and Related Compounds in the Synthesis of Biologically Active Natural Products. The Chemical Record 18 (2): 239-264. https://doi.org/10.1002/tcr.201700064

Trott, O. & Olson, A. J. (2010). AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of computational chemistry 31 (2): 455-461. https://doi.org/10.1002/jcc.21334

Wang, Y., Liu, Y., Zhang, M., Lv, L., Zhang, X., Zhang, P. & Zhou, Y. (2019). Inhibition of PTGS1 promotes osteogenic differentiation of adipose-derived stem cells by suppressing NF-kB signaling. Stem Cell Research & Therapy 10: 1-10. https://doi.org/10.1186/s13287-019-1167-3

Xia, X. (2017). Bioinformatics and drug discovery. Current topics in medicinal chemistry 17 (15): 1709-1726. https://doi.org/10.2174/1568026617666161116143440

Yu, J., Zhang, L., Yan, G., Zhou, P., Cao, C., Zhou, F., ... & Chen, Y. (2019). Discovery and biological evaluation of novel androgen receptor antagonist for castration-resistant prostate cancer. European Journal of Medicinal Chemistry 171: 265-281. https://doi.org/10.1016/j.ejmech.2019.03.041

Zeng, J., Sauter, E. R. & Li, B. (2020). FABP4: a new player in obesity-associated breast cancer. Trends in molecular medicine 26 (5): 437-440. https://doi.org/10.1016/j.molmed.2020.03.004

Zhao, F., Wang, P., Lucardi, R. D., Su, Z. & Li, S. (2020). Natural sources and bioactivities of 2, 4-di-tert-butylphenol and its analogs. Toxins 12(1): 35. https://doi.org/10.3390/toxins12010035

El perfil fitoquímico y los análisis in silico revelan características similares a las de los fármacos en el musgo Brachythecium salebrosum (Bryophyta, Brachytheciaceae): Avaliação do potencial semelhante ao de uma droga no musgo Brachythecium salebrosum (Bryophyta, Brachytheciaceae)

Descargas

Publicado

2025-08-13

Cómo citar

Dhyani, A., Shantanu, K. ., Mangangcha, I. R. ., Soham, S., Kasana, S., & Uniyal, P. L. (2025). El perfil fitoquímico y los análisis in silico revelan características similares a las de los fármacos en el musgo Brachythecium salebrosum (Bryophyta, Brachytheciaceae): Avaliação do potencial semelhante ao de uma droga no musgo Brachythecium salebrosum (Bryophyta, Brachytheciaceae). Lilloa, 507–530. https://doi.org/10.30550/j.lil/2164
سرور مجازی ایران Decentralized Exchange

Número

Sección

Artículos originales
فروشگاه اینترنتی صندلی اداری جوراب افزایش قد ژل افزایش قد خرید vpn سرور مجازی بایننس