Mecanismos bioquímicos y fisiológicos que le permiten sobrevivir y producir a los árboles de olivo expuestos a condiciones de estrés hídrico

Autores/as

  • Mariano A. Busso Departamento de Agronomía, Universidad Nacional del Sur (UNS); Comisión de Investigaciones Científicas de la Provincia de Buenos Aires. Bahía Blanca, Argentina https://orcid.org/0000-0001-7393-6609

DOI:

https://doi.org/10.30550/j.lil/1711

Palabras clave:

Olea europaea, sequía, estrés hídrico, mecanismos de resistencia

Resumen

Las propiedades benéficas de los frutos comestibles del olivo (Olea europaea L.) y su aceite han tenido un rol importante en nuestra dieta. Las regiones árida y semiárida donde se produce el olivo están usualmente caracterizadas por condiciones severas de verano, incluyendo poca lluvia, calor excesivo y alta irradiación a menudo diariamente. Entre los constituyentes del estrés durante el verano, el estrés hídrico es usualmente el más crítico, aunque el mismo es altamente exacerbado por los otros. Bajo condiciones severas de estrés hídrico, un cultivar de cualquier árbol de olivo puede necesitar mecanismos bioquímicos y fisiológicos específicos que le permitan sobrevivir y ser productivo. Se conoce bien que estos mecanismos de resistencia al estrés hídrico generalmente actúan simultáneamente. De todas formas, la adaptación al estrés hídrico integra mucho más que el concepto de resistencia al mismo (dado por mecanismos que permiten el escape, o la evitación y/o tolerancia al estrés hídrico). La capacidad de recuperación también juega un rol fundamental en el crecimiento y supervivencia de las plantas. Esto toma especial importancia cuando las plantas están continuamente expuestas durante su vida a ciclos repetidos de estrés hídrico y niveles adecuados de agua después del mismo. Aunque se considera que la estrés hídrico es el principal factor estresante, otros como el calor y la alta irradiancia, especialmente en asociación mutua, también reducen las funciones de la planta. Como resultado, diferentes mecanismos de resistencia son adoptados por la vegetación terrestre. Esta revisión resume cada uno de estos mecanismos.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Abdallah, B. M., Methenni, K., Nouairi, I., Zarrouk, M. & Youssef, N. B. (2017). Drought priming improves subsequent more severe drought in a drought-sensitive cultivar of olive cv. Chétoui. Scientia Horticulturae 221: 43-52. https://doi.org/10.1016/j.scienta.2017.04.021

Abdul-Kareem, H., Ul-Hassan, M., Zain, M., Irshad, A., Shakoor, N., Saleem, S., Niu, J., Skalicky, M., Chen, Z., Guo, Z. & Wang, Q. (2022). Nanosized zinc oxide (n.ZnO) particles pretreatment to alfalfa seedlings alleviate heat-induced morpho-physiological and ultrastructural damages. Environmental Pollution 303: 119069. https://doi.org/10.1016/j.envpol.2022.119069 DOI: https://doi.org/10.1016/j.envpol.2022.119069

Ahmad, M. A., Murali, P. V. & Marimuthu, G. (2014). Impact of salicylic acid on growth, photosynthesis and compatible solute accumulation in Allium cepa L. subjected to drought stress. International Journal of Agricultural and Food Science 4: 22-30.

Ahmadipour, S., Arji, I., Ebadi, A. & Abdossi, V. (2018). Physiological and biochemical response of some olive cultivars (Olea europaea L.) to water stress. Cellular and Molecular Biology 64: 20-29. https://doi.org/10.14715/cmb/2017.64.15.4 DOI: https://doi.org/10.14715/cmb/2017.64.15.4

Ahumada-Orellana, L., Ortega-Farías, S., Poblete-Echeverría, C. & Searles, P. S. (2019). Estimation of stomatal conductance and stem water potential threshold values for water stress in olive trees (cv. Arbequina). Irrigation Science 37: 461-467. https://doi.org/10.1007/s00271-019-00623-9 DOI: https://doi.org/10.1007/s00271-019-00623-9

Ahumada-Orellana, L. E., Ortega-Farias, S., Searles, P. S. & Retamales, J. B. (2017). Yield and water productivity responses to irrigation cut-o? strategies after fruit set using stem water potential thresholds in a super-high density olive orchard. Frontiers in Plant Science 8:1280-1306. https://doi.org/10.3389/fpls.2017.01280 DOI: https://doi.org/10.3389/fpls.2017.01280

Allakhverdiev, S. I. (2020). Optimising photosynthesis for environmental ?tness. Functional Plant Biology 47: iii–vii. https://doi.org/10.1071/FPv47 n11_FO DOI: https://doi.org/10.1071/FPv47n11_FO

Al-Yasi, H., Attia, H., Alamer, K., Hassan, F., Ali, E., Elshazly, S., Siddique, K. H. M. & Hessini, K. (2020). Impact of drought on growth, photosynthesis, osmotic adjustment, and cell wall elasticity in Damask rose. Plant Physiology and Biochemistry 150: 133-139. https://doi.org/10.1016/j.plaphy.2020.02.038 DOI: https://doi.org/10.1016/j.plaphy.2020.02.038

Bacelar, E. A., Moutinho-Pereira, J. M., Gonçalves, B. C., Lopes, J. I. & Correia, C. M. (2009). Physiological responses of different olive genotypes to drought conditions. Acta Physiologiae Plantarum 31: 611-621. https://doi.org/10.1007/s11738-009-0272-9 DOI: https://doi.org/10.1007/s11738-009-0272-9

Ben-Abdallah, M., Methenni, K., Nouairi, I., Zarrouk, M. & Youssef N. B. (2017). Drought priming improves subsequent more severe drought in a drought-sensitive cultivar of olive cv. Chetoui. Scientia Horticulturae 221: 43-52. https://doi.org/10.1016/j.scienta.2017.04.021 DOI: https://doi.org/10.1016/j.scienta.2017.04.021

Bertolino, L. T., Caine, R. S. & Gray, J. E. (2019). Impact of Stomatal Density and Morphology on Water-Use Efficiency in a Changing World. Frontiers in Plant Science 10: 225. https://doi.org/10.3389/fpls.2019.00225 DOI: https://doi.org/10.3389/fpls.2019.00225

Bhusal, N., Han, S. G. & Yoon, T. M. (2019). Impact of drought stress on photosynthetic response, leaf water potential, and stem sap flow in two cultivars of bi-leader apple trees (Malus × domestica Borkh.). Scientia Horticulturae 246: 535-543. https://doi.org/10.1016/j.scienta.2018.11.021 DOI: https://doi.org/10.1016/j.scienta.2018.11.021

Brito, C., Dinis, L. T., Meijón, M., Ferreira, H., Pinto, G., Moutinho-Pereira, J. & Correia, C. (2018). Salicylic acid modulates olive tree physiological and growth responses to drought and rewatering events in a dose dependent manner. Journal of Plant Physiology 230: 21-32. https://doi.org/10.1016/j.jplph.2018.08.004 DOI: https://doi.org/10.1016/j.jplph.2018.08.004

Brito, C., Dinis, L.T., Ferreira, H., Coutinho, J., Moutinho-Pereira, J. & Correia, C. M. (2019a). Salicylic acid increases drought adaptability of young olive trees by changes on redox status and ionome. Plant Physiology and Biochemistry 141: 315-324. https://doi.org/10.1016/j.plaphy.2019.06.011 DOI: https://doi.org/10.1016/j.plaphy.2019.06.011

Brito, C., Dinis, L. T., Moutinho-Pereira, J. & Correia, C. M. (2019b). Drought stress e?ects and olive tree acclimation under a changing Climate. Plants 8: 232. https://doi.org/10.3390/plants8070232 DOI: https://doi.org/10.3390/plants8070232

Busso, C. A. & Fernández, O. A. (2018). Arid and Semiarid Rangelands of Argentina. In: M. K. Gaur, V.R. Squires (Eds.), Climate Variability Impacts on Land Use and Livelihoods in Drylands (p. 261-292). New York, Springer. https://link.springer.com/book/10.1007/978-3-319-56681-8 DOI: https://doi.org/10.1007/978-3-319-56681-8_13

Calvo-Polanco, M., Ruiz-Lozano, J. M., Azcon, R. R., Beuzon, C., Garcia, J. L., Cantos, M. & Aroca, R. (2019). Phenotypic and molecular traits determine the tolerance of olive trees to drought stress. Plant Physiology and Biochemistry 139: 521-527. https://doi.org/10.1016/j.plaphy.2019.04.017 DOI: https://doi.org/10.1016/j.plaphy.2019.04.017

Carillo, P., Mastrolonardo, G., Nacca, F., Parisi, D., Verlotta, A. & Fuggi, A. (2008). Nitrogen metabolism in durum wheat under salinity: accumulation of proline and glycine betaine. Functional Plant Biology 35: 412-26. https://doi.org/10.1071/FP08108 DOI: https://doi.org/10.1071/FP08108

Castro, P., Puertolasa, J. & Dodda, I. C. (2019). Stem girdling uncouples soybean stomatal conductance from leaf water potential by enhancing leaf xylem ABA concentration. Environmental and Experimental Botany 159: 149-156. https://doi.org/10.1016/j.envexpbot.2018.12.020 DOI: https://doi.org/10.1016/j.envexpbot.2018.12.020

Ceccarelli, S., Grando, S., Baum, M. & Udupa, S. M. (2004). Breeding for Drought Resistance in a Changing Climate. In: S.C. Rao, J. Ryan (Eds.), Challenges and Strategies of Dryland Agriculture (pp. 167-190). Madison: Crop Science Society of America Special Publications. DOI: https://doi.org/10.2135/cssaspecpub32.c11

Chai, Q., Gan, Y., Zhao, C., Xu, H. L., Waskom, R. M., Niu, Y. & Siddique, K. H. M. (2015). Regulated de?cit irrigation for crop production under drought stress (review). Agronomy for Sustainable Development 36: 3. https://doi.org/10.1007/s13593-015-0338-6f DOI: https://doi.org/10.1007/s13593-015-0338-6

Cincunegui, C., Lupín, B., Tedesco, L., Pérez, S., Fernández, L., Roldán, C. & Lobbosco, D. (2019). Consumo y territorio. Aceite de oliva producido en el Sudoeste Bonaerense. En II Pre Congreso Argentino de Desarrollo Territorial y I Jornadas Patagónicas de Intercambio Disciplinar sobre Desarrollo y Territorio. Bariloche, Argentina, 29-30 abril. 6 p.

Cortleven, A., Leuendorf, J. E., Frank, M., Pezzetta, D., Bolt, S. & Schmulling, T. (2019). Cytokinin action in response to abiotic and biotic stresses in plants. Plant, Cell and Environment 42: 998-1018. https://doi.org/10.1111/pce.13494 DOI: https://doi.org/10.1111/pce.13494

Devireddy, A. R., Zandalinas, S. I., Fichman, Y. & Mittler, R. (2021). Integration of reactive oxygen species and hormone signaling during abiotic stress. Plant Journal 105: 459-476. https://doi.org/10.1111/tpj.15010 DOI: https://doi.org/10.1111/tpj.15010

Dias, M. C., Correia, S., Serodio, J., Silva, A. M. S., Freitas, H. & Santos, C. (2018). Chlorophyll ?uorescence and oxidative stress endpoints to discriminate olive cultivars tolerance to drought and heat episodes. Scientia Horticulturae 231: 31-35. https://doi.org/10.1016/j.scienta.2017.12.007 DOI: https://doi.org/10.1016/j.scienta.2017.12.007

Dichio, B., Margiotta, G., Xiloyannis, C., Bufo, S. A., Sofo, A.& Cataldi, T. R. I. (2009). Changes in water status and osmolyte contents in leaves and roots of olive plants (Olea europaea L.) subjected to water deficit. Trees 23: 247-256. https://doi.org/10.1007/s00468-008-0272-1 DOI: https://doi.org/10.1007/s00468-008-0272-1

Dichio, B., Xiloyannis, C., Sofo, A. & Montanaro, G. (2006). Osmotic regulation in leaves and roots of olive trees during a water deficit and rewatering. Tree Physiology 26: 179-185. http://heronpublishing.com DOI: https://doi.org/10.1093/treephys/26.2.179

Elhami, B., Zaare-Nhandi, F. & Jahanbakhsh-Godehkahriz, S. (2015). E?ect of sodium nitroprusside (SNP) on physiological and biological responses of olive (Olea europaea cv. Conservolia) under water stress. International Journal of Bioscience 6: 148-156. https://dx.doi.org/10.12692/ijb/6.4.148-156 DOI: https://doi.org/10.12692/ijb/6.4.148-156

Ennajeh, M., Vadel, A. M., Khemira, H., Mimoun, M. B. & Hellali, R. (2006) Defense mechanisms against water deficit in two olive (Olea europaea L.) cultivars ‘Meski’ and ‘Chemlali’, The Journal of Horticultural Science and Biotechnology 81: 99-104. https://doi.org/10.1080/14620316.2006.11512035

Ennajeh, M., Vadel, A. M. & Khemira, H. (2009). Osmoregulation and osmoprotection in the leaf cells of two olive cultivars subjected to severe water stress. Acta Physiologiae Plantarum 31: 711-721. https://doi.org/10.1007/s11738-009-0283-6 DOI: https://doi.org/10.1007/s11738-009-0283-6

Ennajeh, M., Vadel, A. M., Khemira, H., Ben-Mimoun, M. & Hellali, R. (2015). Defense mechanisms against water de?cit in two olive (Olea europaea L.) cultivars ‘Meski’ and ‘Chemlali.’ The Journal of Horticultural Science and Biotechnology 81: 99-104. https://doi.org/10.1080/14620316.2006.11512035 DOI: https://doi.org/10.1080/14620316.2006.11512035

Faize, M., Fumanal, B., Luque, F., Ramírez-Tejero, J. A., Zou, Z., Qiao, X., Faize, L., Gousset-Dupont, A., Roeckel-Drevet, P., Label, P. & Venisse, J. S. (2020). Genome Wild Analysis and Molecular Understanding of the Aquaporin Diversity in Olive Trees (Olea Europaea L.). International Journal of Molecular Science 21: 4183. https://doi.org/10.3390/ijms21114183 DOI: https://doi.org/10.3390/ijms21114183

Fernández, J. E. (2014). Understanding olive adaptation to abiotic stresses as a tool to increase crop performance. Environmental and Experimental Botany 103: 158-179. https://doi.org/10.1016/j.envexpbot.2013.12.00310.1016/j.envexpbot.2013.12.003 DOI: https://doi.org/10.1016/j.envexpbot.2013.12.003

Flexas, J. & Medrano, H. (2002). Drought-inhibition of photosynthesis in C3 plants: stomatal and non-stomatal limitations revisited. Annals of Botany 89: 183-189. https://doi.org/10.1093/aob/mcf027 DOI: https://doi.org/10.1093/aob/mcf027

Flower, D. J. & Ludlow, M. M. (1986). Contribution of osmotic adjustment to the dehydration tolerance of water-stressed pigeon pea (Cajanus cajan (L.) millsp.) leaves. Plant Cell & Environment 9: 33-40. https://doi.org/10.1111/1365-3040.ep11589349 DOI: https://doi.org/10.1111/j.1365-3040.1986.tb01720.x

Gao J., Zhang R. H., Wang W. B., Li Z. W.& Xue J. Q. (2015). E?ects of drought stress on performance of photosystem II in maize seedling stage. Journal of Applied Ecology 26: 1391-1396.

Gao, H., Zhang, Z. K., Chai, H. K., Cheng, N., Yang, Y., Wang, D. N., Yang, T. & Cao, W. (2016). Melatonin treatment delays postharvest senescence and regulates reactive oxygen species metabolism in peach fruit. Postharvest Biology and Technology 118: 103-10. https://doi.org/10.1016/j.postharvbio.2016.03.006 DOI: https://doi.org/10.1016/j.postharvbio.2016.03.006

Gholami, R. & Zahedi, S. M. (2019). Identifying drought-tolerant olive genotypes and their biochemical and some physiological responses to various irrigation levels. Journal of Plant Nutrition 42: 2057-2069. https://doi.org/10.1080/01904167.2019.1648672 DOI: https://doi.org/10.1080/01904167.2019.1648672

Gholami, R., FahadiHoveizeh, N., Zahedi, S. H., Gholami, H. & Carillo, P. (2022). Melatonin alleviates the adverse e?ects of water stress in adult olive cultivars (Olea europaea cv. Sevillana & Roughani) in ?eld condition. Agricultural Water Management 269: 107681. https://doi.org/10.1016/j.agwat.2022.107681 DOI: https://doi.org/10.1016/j.agwat.2022.107681

Goñi, L. (2020). Estudio de la fenología del olivo (Olea europaea L.) cv. arbequina en el sudoeste bonaerense. (Tesis de Magister), Universidad Nacional del Sur, Argentina.

Haider, M. S., Kurjogi, M. M., Khalil-ur-Rehman, M., Pervez, T., Songtao, J., Fiaz, M., Jogaiah, S., Wang, C. & Fang, J. (2018). Drought stress revealed physiological, bio-chemical and gene-expressional variations in ‘Yoshihime’ peach (Prunus Persica L) cultivar. Journal of Plant Interactions 13: 83-90. https://doi.org/10.1080/17429145.2018.1432772 DOI: https://doi.org/10.1080/17429145.2018.1432772

Hejnák, V., Tatar, O., Atasoy, G. D., Martinkova, J., Celen, A. E., Hnilicka, F. & Skalicky, M. (2015). Growth and photosynthesis of upland and pima cotton: response to drought and heat stress. Plant, Soil and Environment 61: 507-514. https://doi.org/10.17221/512/2015-PSE DOI: https://doi.org/10.17221/512/2015-PSE

Hesse, B. D., Goisser, M., Hartmann, H. & Grams, T. E. E. (2019). Repeated summer drought delays sugar export from the leaf and impairs phloem transport in mature beech. Tree Physiology 39: 192-200. https://doi.org/10.1093/treephys/tpy122 DOI: https://doi.org/10.1093/treephys/tpy122

Hortensteiner, S. & Krautler, B. (2011). Chlorophyll breakdown in higher plants. Biochimica et Biophysica Acta (BBA) Bioenergetics 1807: 977-88. https://doi.org/10.1016/j.bbabio.2010.12.007 DOI: https://doi.org/10.1016/j.bbabio.2010.12.007

Hussain, S., Khalid, M. F., Saqib, M., Ahmad, S., Zafar, W., Rao, M. J., Morillon, R. & Anjum, M. A. (2018). Drought tolerance in citrus rootstocks is associated with better antioxidant defense mechanism. Acta Physiologiae Plantarum 40: 135. https://doi.org/10.1007/s11738-018-2710-z DOI: https://doi.org/10.1007/s11738-018-2710-z

Juenger, T. E. & Verslues, P. E. (2023). Time for a drought experiment: Do you know your plants’ water status?. The Plant Cell 35: 10-23. https://doi.org/10.1093/plcell/koac324 DOI: https://doi.org/10.1093/plcell/koac324

Karimi, S., Yadollahi, A., Arzani, K. & Imani, A. (2015). Gas exchange response of almond genotypes to water stress. Photosynthetica 53: 29-34. https://doi.org/10.1007/s11099-015-0070-0 DOI: https://doi.org/10.1007/s11099-015-0070-0

Karimi, S., Rahemi, M., Rostami, A. A. & Sedaghat, S. (2018). Drought Effects on Growth, Water Content and Osmoprotectants in Four Olive Cultivars with Different Drought Tolerance. International Journal of Fruit Science 18: 254-267. https://doi.org/10.1080/15538362.2018.1438328 DOI: https://doi.org/10.1080/15538362.2018.1438328

Khoyerdi, F. F., Shamshiri, M. H. & Estaji, A. (2016). Changes in some physiological and osmotic parameters of several pistachio genotypes under drought stress. Scientia Horticulturae 198: 44-51. https://doi.org/10.1016/j.scienta.2015.11.028 DOI: https://doi.org/10.1016/j.scienta.2015.11.028

Lupín, B. & Picardi, S. (2016). Compartiendo una experiencia de vinculación con los productores de aceite de oliva del sudoeste bonaerense. En V Jornadas Nacionales de Compromiso Social Universitario y IV Jornadas de Compromiso Social Universitario" Mariano Salgado".

Lupín, B., Cincunegui, C., Pérez, S. M. & Tedesco, L. (2018). El desarrollo olivícola del Sudoeste Bonaerense desde la perspectiva del consumidor de la Ciudad de Bahía Blanca. En 2do Congreso Regional de Economía del Norte Grande. Resistencia-Chaco, 4-5 octubre.

Ma, Y., Dias, M. C. & Freitas, H. (2020). Drought and salinity stress responses and microbe-induced tolerance in plants. Frontiers in Plant Science 11: 591911. https://doi.org/10.3389/fpls.2020.591911 DOI: https://doi.org/10.3389/fpls.2020.591911

Mattos, L. & Moretti, C. (2015). Oxidative stress in plants under drought conditions and the role of different enzymes. Enzyme Engineering 5: 1-6. DOI: https://doi.org/10.4172/2329-6674.1000136

Mechri, B., Tekaya, M., Attia, F., Hammami, M. & Chehab, H. (2020). Drought stress improved the capacity of Rhizophagus irregularis for inducing the accumulation of oleuropein and mannitol in olive (Olea europaea) roots. Plant, Physiology and Biochemistry 156: 178-191. https://doi.org/10.1016/j.plaphy.2020.09.011 DOI: https://doi.org/10.1016/j.plaphy.2020.09.011

Nadal-Salas, D., Grote, R., Birami, B., Knüver, T., Rehschuh, R., Schwarz, S. & Ruehr, N. K. (2021). Leaf Shedding and Non-Stomatal Limitations of Photosynthesis Mitigate Hydraulic Conductance Losses in Scots Pine Saplings During Severe Drought Stress. Frontiers in Plant Science 12: 715127. https://doi.org/10.3389/fpls.2021.715127 DOI: https://doi.org/10.3389/fpls.2021.715127

Naor, A., Schneider, D., Ben-Gal, A., Zipori, I., Dag, A., Kerem, Z., Birger, R., Peres, M. & Gal, Y. (2013). The effects of crop load and irrigation rate in the oil accumulation stage on oil yield and water relations of ‘Koroneiki’ olives. Irrigation Science 31: 781-791. https://doi.org/10.1007/s00271-012-0363-z DOI: https://doi.org/10.1007/s00271-012-0363-z

Nikoleta-Kleio, D., Theodoros, D. & Roussos, P. A. (2020). Antioxidant defense system in young olive plants against drought stress and mitigation of adverse e?ects through external application of alleviating products. Science Horticulture 259: 108812. https://doi.org/10.1016/j.scienta.2019.108812 DOI: https://doi.org/10.1016/j.scienta.2019.108812

Orgaz, F., Fereres, E., Barranco, D., Fernández-Escobar, R. & Rallo, L. (2008). El Cultivo del Olivo. (6th ed.). Ediciones Mundi-Prensa y Junta de Andalucía.

Ozturk, M., Unal, B. T., García-Caparrós, P., Khursheed, A., Gul, A. & Hasanuzzaman, M. (2020). Osmoregulation and its actions during the drought stress in plants. Physiologia Plantarum 172: 1321-1335. https://doi.org/10.1111/ppl.13297 DOI: https://doi.org/10.1111/ppl.13297

Parihar, P., Singh, S., Singh, R., Singh, V. P. & Prasad, S. M. (2015). E?ect of salinity stress on plants and its tolerance strategies: A review. Environmental Science and Pollution Research 22: 4056-75. https://doi.org/10.1007/s11356-014-3739-1 DOI: https://doi.org/10.1007/s11356-014-3739-1

Parvanova, D., Ivanov, S., Konstantinova, T., Karanov, E., Atanassov, A., Tsvetkov, T., Alexieva, V. & Djilianov, D. (2004). Transgenic tobacco plants accumulating osmolytes show reduced oxidative damage under freezing stress. Plant Physiology and Biochemistry 42: 57-63. https://doi.org/10.1016/j.plaphy.2003.10.007 DOI: https://doi.org/10.1016/j.plaphy.2003.10.007

Patakas, A., Nikolaou, N., Zioziou, E., Radoglou, K. & Noitsakis, B. (2002). The role of organic solute and ion accumulation in osmotic adjustment in drought-stressed grapevines. Plant Science 163: 361-367. https://doi.org/10.1016/S0168-9452(02)00140-1 DOI: https://doi.org/10.1016/S0168-9452(02)00140-1

Perez-Martin, A., Michelazzo, Ch., Torres-Ruiz, J. M., Flexas, J., Fernández, J. E., Sebastiani, L. & Diaz-Espejo, A. (2014). Regulation of photosynthesis and stomatal and mesophyll conductance under water stress and recovery in olive trees: correlation with gene expression of carbonic anhydrase and aquaporins. Journal of Experimental Botany 65: 3143-3156. https://doi.org/10.1093/jxb/eru160 DOI: https://doi.org/10.1093/jxb/eru160

Petridis, A., Therios, I., Samouris, G., Koundouras, S. & Giannakoula, A. (2012). Effect of water deficit on leaf phenolic composition, gas exchange, oxidative damage and antioxidant activity of four Greek olive (Olea europaea L.) cultivars. Plant Physiology and Biochemestry 60: 1-11. https://doi.org/10.1016/j.plaphy.2012.07.014 DOI: https://doi.org/10.1016/j.plaphy.2012.07.014

Picardi de Sastre, M. S., González, G. H., & Valls, L. (2015). Aceite de oliva: El mercado mundial y el desempeño comercial de la Argentina. Revista Agroalimentaria 21: 81-93.

Posmyk, M. M., Kontek, R. & Janas, K. M. (2009). Antioxidant enzymes activity and phenolic compounds content in red cabbage seedlings exposed to copper stress. Ecotoxicology and Environmental Safety 72: 596-602. https://doi.org/10.1016/j.ecoenv.2008.04.024 DOI: https://doi.org/10.1016/j.ecoenv.2008.04.024

Prioietti, P., Nasini, L., Del Buono, D., D’Amato, R., Tedeschini, E. & Businelli, D. (2013). Selenium protects olive (Olea europaea L.) from drought stress. Scientia Horticulturae 164: 165-71. https://doi.org/10.1016/j.scienta.2013.09.034 DOI: https://doi.org/10.1016/j.scienta.2013.09.034

Rahemi, M., Karimi, S., Sedaghat, S. & Rostami, A. A. (2017). Physiological responses of olive cultivars to salinity stress. Advances in Horticultural Science 31: 53-59.

Reshmi, G. R. & Rajalakshmi, R. (2012). Drought and UV stress response in Spilanthes acmella Murr., (tooth-ache plant). Journal of Stress Physiology and Biochemistry 8: 110-29.

Roldán, C. (2020). Disposición a pagar por atributos de calidad de aceite de oliva virgen extra en la Ciudad de Bahía Blanca, Argentina (Tesis Doctoral), Universidad Nacional de Mar del Plata, Argentina.

Sami, F., Yusuf, M., Faizan, M., Faraz, A. & Hayat, S. (2016). Role of sugars under abiotic stress. Plant Physiology and Biochemistry 109: 54-61. https://doi.org/10.1016/j.plaphy.2016.09.005 DOI: https://doi.org/10.1016/j.plaphy.2016.09.005

Sanders, G. J. & Arndt, S. K. (2012). Osmotic adjustment under drought conditions. In: Aroca, R. (Ed.), Plant Responses to Drought Stress—From Morphological to Molecular Features (pp. 199–230). New York: Springer. DOI: https://doi.org/10.1007/978-3-642-32653-0_8

Santos, J., Oliveira, L. E., Tadeu Coelho, V., Lopes, G., Souza, T., Porto, A. C., Lira, J., Massote, R., Rocha, C. & Gomes, M. P. (2021). Performance of Hevea brasiliensis under drought conditions on osmoregulation and antioxidant activity through evaluation of vacuolar invertase and reducing sugars. Plant Science Today 8: 312-323. https://horizonepublishing.com/journals/index.php/PST/article/view/1020 DOI: https://doi.org/10.14719/pst.2021.8.2.1020

Sapes, G. & Sala, A. (2021). Relative water content consistently predicts drought mortality risk in seedling populations with different morphology, physiology and times to death. Plant, Cell & Environment 44: 3322-3335. https://doi.org/10.1111/pce.14149 DOI: https://doi.org/10.1111/pce.14149

Secchi, F., Lovisolo, C. & Schubert, A. (2007a). Expression of OePIP2.1 aquaporin gene and water relations of Olea europaea twigs during drought stress and recovery. Annals of Applied Biology 150: 163-167. https://doi.org/10.1111/j.1744-7348.2007.00118.x DOI: https://doi.org/10.1111/j.1744-7348.2007.00118.x

Secchi, F., Lovisolo, C., Uehlein, N., Kaldenho, R. & Schubert, A. (2007b). Isolation and functional characterization of three aquaporins from olive (Olea europaea L.). Planta 225: 381-392. https://doi.org/10.1007/s00425-006-0365-2 DOI: https://doi.org/10.1007/s00425-006-0365-2

Sinclair, T. R. & Seligman, N. (2000). Criteria for publishing papers on crop modeling. Field Crops Research 68: 165-172. https://doi.org/10.1016/S0378-4290(00)00105-2 DOI: https://doi.org/10.1016/S0378-4290(00)00105-2

Srivastava, V., McKee, L. S. & Bulone, V. (2017). Plant Cell Walls. eLS: 1.17. Chichester: John Wiley & Sons, Ltd: https://doi.org/10.1002/9780470015902.a0001682.pub3 DOI: https://doi.org/10.1002/9780470015902.a0001682.pub3

Šurbanovski, N. & Grant, O. M. (2014). The emerging role of aquaporins in plant tolerance. In: P. Ahmad, S. Rasool (Eds.), Emerging Technologies and Management of Crop Stress Tolerance (pp. 431-447). San Diego: Academic Press. DOI: https://doi.org/10.1016/B978-0-12-800875-1.00018-1

Torres-Ruiz, J. M., Diaz-Espejo, A., Perez-Martin, A. & Hernandez-Santana, V. (2015). Role of hydraulic and chemical signals in leaves, stems and roots in the stomatal behaviour of olive trees under water stress and recovery conditions. Tree Physiology 35: 415-424. https://doi.org/10.1093/treephys/tpu055 DOI: https://doi.org/10.1093/treephys/tpu055

Vasques, A. R., Pinto, G., Dias, M. C., Correia, C. M., Moutinho-Pereira, J. M., Vallejo, V. R., Santos, C. & Keizer, J. J. (2016). Physiological response to drought in seedlings of Pistacia lentiscus (mastic tree). New Forests 47: 119-30. https://doi.org/10.1007/s11056-015-9497-1 DOI: https://doi.org/10.1007/s11056-015-9497-1

Verma, G., Srivastava, D., Tiwari, P. & Chakrabarty, D. (2019). ROS modulation in crop plants under drought stress. In: M. Hasanuzzaman, V. Fotopoulos, K. Nahar, M. Fujita (Eds.). Reactive, oxygen, nitrogen and sulfur species in plants (pp. 311-366). https://doi.org/10.1002/9781119468677.ch13 DOI: https://doi.org/10.1002/9781119468677.ch13

Vieira, E. A., Silva, M. G., Moro, C. F. & Laura, V. A. (2017). Physiological and biochemical changes attenuate the effects of drought on the Cerrado species Vatairea macrocarpa (Benth.) Ducke. Plant Physiology and Biochemistry 115: 472-483. https://doi.org/10.1016/j.plaphy.2017.04.022 DOI: https://doi.org/10.1016/j.plaphy.2017.04.022

Wang, D., Pan, Y., Zhao, X., Zhu, L., Fu, B. & Li, Z. (2011). Genome-wide temporal-spatial gene expression pro?ling of drought responsiveness in rice. BMC Genomics 12: 149. https://doi.org/10.1186/1471-2164-12-149 DOI: https://doi.org/10.1186/1471-2164-12-149

Wang, Z., Li, G., Sun, H., Ma, L., Guo, Y., Zhao, Z., Gao, H. & Mei, L. (2018). E?ects of drought stress on photosynthesis and photosynthetic electron transport chain in young apple tree leaves. Biology Open 7: bio035279. https://doi.org/10.1242/bio.035279 DOI: https://doi.org/10.1242/bio.035279

Wu, H. H., Zou, Y. N., Rahman, M. M., Ni, Q. D. & Wu, Q. S. (2017). Mycorrhizas alter sucrose and proline metabolism in trifoliate orange exposed to drought stress. Scientific Reports 7: 42389. https://doi.org/10.1038/srep42389 DOI: https://doi.org/10.1038/srep42389

Xia, X. J., Zhou, Y. H., Shi, K., Zhou, J., Foyer, C. H. & Yu, J. Q. (2015). Interplay between reactive oxygen species and hormones in the control of plant development and stress tolerance. Journal of Experimental Botany 66: 2839-56. https://doi.org/10.1093/jxb/erv089 DOI: https://doi.org/10.1093/jxb/erv089

Yoshida, T., Obata, T., Feil, R., Lunn, J. E., Fujita, Y., Yamaguchi-Shinozaki, K. & Fernie, A. R. (2019). The role of abscisic acid signaling in maintaining the metabolic balance required for Arabidopsis growth under non-stress conditions. Plant Cell 31: 84-105. https://doi.org/10.1105/tpc.18.00766 DOI: https://doi.org/10.1105/tpc.18.00766

Zahedi, S. M., Hosseini, M. S., Fahadi Hoveizeh, N., Gholami, R., Abdelrahman, M. & Phan Tran, L. S. (2021). Exogenous melatonin mitigates salinity-induced damage in olive seedlings by modulating ion homeostasis, antioxidant defense, and phytohormone balance. Physiologia Plantarum 173: 1682-94. https://doi.org/10.1111/ppl.13589 DOI: https://doi.org/10.1111/ppl.13589

Mecanismos bioquímicos y fisiológicos que le permiten sobrevivir y producir a los árboles de olivo expuestos a condiciones de estrés hídrico

Descargas

Publicado

2023-09-14

Cómo citar

Busso, M. A. (2023). Mecanismos bioquímicos y fisiológicos que le permiten sobrevivir y producir a los árboles de olivo expuestos a condiciones de estrés hídrico. Lilloa, 60(2), 171–188. https://doi.org/10.30550/j.lil/1711
صندلی اداری سرور مجازی ایران Decentralized Exchange

Número

Sección

Artículos originales
فروشگاه اینترنتی صندلی اداری جوراب افزایش قد ژل افزایش قد خرید vpn خرید vpn سرور مجازی بایننس