Fire-Induced Changes in Daily Butterfly Assemblages in Mediterranean Forests: Insights from the Edough Massif, Algeria
DOI:

Palavras-chave:
Rhopalocera, wildfire, Mediterranean forest, community structure, ecological resilienceResumo
Forest fires significantly alter the biodiversity of Mediterranean ecosystems, particularly butterfly communities, which are sensitive bioindicators of environmental changes. This study compares the diversity and structure of diurnal butterflies in two cork oak forests of the Edough Massif (Algeria): a natural forest and a post-fire forest, based on surveys conducted from March to July 2023.
Butterfly sampling was carried out using two complementary methods: a modified linear transect approach based on the British Butterfly Monitoring Scheme (BMS) and the Kilometric Abundance Index (KAI). Species abundances were recorded along predefined transects under standardized conditions.
The results show a significant decline in species diversity after the fire, with only 11 species recorded in the burned habitat compared to 31 in the natural forest. Abundance analysis reveals that some sensitive species disappear or become rare, while others, more fire-resistant, benefit from the newly created ecological conditions. The Bray-Curtis index highlights a moderate but notable transformation of butterfly communities.
These findings confirm that fire acts as an ecological filter, structuring populations according to their tolerance to disturbances. The study emphasizes the need for adapted management and restoration strategies to mitigate the effects of wildfires and promote the resilience of Mediterranean ecosystems.
Downloads
Referências
Aponte, C., de Groot, W. J., & Wotton, B. M. (2016). Incendies de forêts et changement climatique : causes, conséquences et options de gestion. International Journal of Wildland Fire, 25(8), i–ii.
Benotmane, K. H., Boukheroufa, M., Sakraoui, R., Sakraoui, F., Centeri, C., Fehér, Á., & Katona, K. (2024). Comparative effects of wild boar (Sus scrofa) rooting on the chemical properties of soils in natural and post-fire environments of the Edough Forest Massif (Northeastern Algeria). Land, 13(3), 382. https://doi.org/10.3390/land13030382
Börschig, C., Klein, A. M., von Wehrden, H., & Krauss, J. (2013). Traits of butterfly communities change from specialist to generalist characteristics with increasing land-use intensity. Basic and Applied Ecology, 14(7), 547–554. https://doi.org/10.1016/j.baae.2013.09.002
Calheiros, T., Pereira, M. G., & Nunes, J. P. (2021). Évaluer les impacts du changement climatique futur sur les phénomènes météorologiques extrêmes liés aux incendies et les régions pyrotechniques de la péninsule ibérique. Science of the Total Environment, 754, 142233. https://doi.org/10.1016/j.scitotenv.2020.142233
Demerges, M., & Bachelard, P. (2002). Guide d’identification des papillons de France et d’Europe. Delachaux et Niestlé.
Faure, É. (2007). Suivi de milieux ouverts dans le parc naturel régional du Luberon par des papillons de jour (Rhopalocères) bioindicateurs. Courrier scientifique du Parc naturel régional du Luberon, 8, 86–101.
Gongalsky, K. B. (2017). The effect of wildfires on soil fauna: A meta-analysis. Applied Soil Ecology, 123, 310–315. https://doi.org/10.1016/j.apsoil.2017.09.004
Hadiby, R., Boukheroufa, M., Adjami, Y., Djedda, H., Boussaha, A., Frih, A., Benotmane, K. H., & Sakraoui, F. (2022). Part comparée des saproxyliques dans le peuplement de Coléoptères entre milieu naturel et milieu post-incendié du massif forestier de l’Édough (Nord-Est, Algérie). Bulletin de la Société Zoologique de France, 147(4).
Kahilainen, A., Menegotto, A., Fortelius, M., & Ovaskainen, O. (2024). Intrapopulation variance in ecophysiological responses to water limitation in a butterfly metapopulation suggests adaptive resilience to environmental variability. Ecological Monographs, 94(1), e1560. https://doi.org/10.1002/ecm.1560
Lafranchis, T. (1997). Papillons de France: Guide de détermination des papillons diurnes. Biotope.
Lafranchis T. (2014). Papillons de France : guide de détermination des papillons diurnes. Paris: Diatheo, 351 p
Lafranchis, T., Jutzeler, D., Guillosson, J.-Y., Kan, P., & Kan, B. (2015). La vie des papillons: Écologie, biologie et comportement des rhopalocères de France. Diatheo, 751 p.
Laref, N., Rezzag-Bedida, R. A., Boukheroufa, M., Sakraoui, R., Henada, R. L., Hadiby, R., & Sakraoui, F. (2022). Diversity and status of day butterflies (Lepidoptera: Rhopalocera) in different plant associations of the Edough Forest Massif (Northeastern Algeria). Biodiversitas, Journal of Biological Diversity, 23(2), Article e. https://doi.org/10.13057/biodiv/d230247
Lloret, F., Pausas, J. G., & Vilà, M. (2002). Wildfires and landscape patterns in the Eastern Iberian Peninsula. Landscape Ecology, 17(8), 745–759. https://doi.org/10.1023/A:1022966931523
Manil, L., Descimon, H., & Dujardin, J. P. (2006). Impact of fires on butterfly communities in Mediterranean forests. Biodiversity and Conservation, 15(5), 1747–1763. https://doi.org/10.1007/s10531-005-1713-1
Marty, C. (2019). Pollinisation et régénération forestière: Rôle des lépidoptères. Éditions Quae.
Mason, S. C., Palmer, G., Fox, R., Gillings, S., Hill, J. K., & Thomas, C. D. (2021). Responses of butterflies to natural perturbations and climate change across space and time. Ecology Letters, 24(10), 2122–2134. https://doi.org/10.1111/ele.13838
Moreno, J. M., Vázquez, A., & Vélez, R. (2014). Recent history of forest fires in Spain. In J. M. Moreno (Ed.), Wildland Fire Danger Estimation and Mapping (pp. 185–207). Elsevier. https://doi.org/10.1016/B978-0-12-802749-3.00010-4
Moretti, M., Duelli, P., & Obrist, M. K. (2006). Biodiversity and resilience of arthropod communities after fire. Biodiversity and Conservation, 15(11), 2823–2842. https://doi.org/10.1007/s10531-005-6233-5
Nakazawa, Y. (2023). The role of butterflies in seed dispersal: An overlooked ecological function. Ecological Research, 38(2), 157–169. https://doi.org/10.1111/1440-1703.12222
Pausas, J. G., & Keeley, J. E. (2009). A burning story: The role of fire in the history of life. Bioscience, 59(7), 593–601. https://doi.org/10.1525/bio.2009.59.7.10
Pavlick, R., Reu, B., Druel, A., Dendoncker, N., & Fischer, M. (2017). Functional trait diversity and community assembly: The effect of disturbance filtering on post-fire vegetation. Journal of Ecology, 105(3), 744–758. https://doi.org/10.1111/1365-2745.12796
Pellet, J., & Gander, A. (2009). Butterfly monitoring schemes: A European overview. Journal of Insect Conservation, 13(4), 459–474. https://doi.org/10.1007/s10841-009-9203-4
Radford, J. Q., Bennett, A. F., & Cheers, G. J. (2014). Landscape-level thresholds of habitat cover for woodland-dependent birds. Biological Conservation, 124(3), 317–337. https://doi.org/10.1016/j.biocon.2005.01.038.
Rija, A. A. (2022). Effects of habitat fragmentation on butterfly diversity: A meta-analysis. Conservation Biology, 36(1), 102–112. https://doi.org/10.1111/cobi.13789
Robineau, X. (2007). Les papillons d’Europe: Identification et écologie. Éditions Nathan.
Ruchin, A. B. (2021). Changes in butterfly diversity after wildfire disturbances in European forests. Journal of Insect Science, 21(3), 25. https://doi.org/10.1093/jisesa/ieab020
Schlegel, B., & Hofstetter, R. W. (2021). Butterfly responses to climate-induced vegetation changes. Global Ecology and Biogeography, 30(6), 1127–1140. https://doi.org/10.1111/geb.13284
Smith, J. A., Drietz, V. R., & McCullough, I. M. (2021). Fire alters butterfly communities: Species-specific and compensatory responses to a large-scale disturbance. Biological Conservation, 256, 109072. https://doi.org/10.1016/j.biocon.2021.109072
Souchko, A. (2022). The role of butterfly larvae in forest soil nutrient cycling. Soil Biology & Biochemistry, 168, 108650. https://doi.org/10.1016/j.soilbio.2022.108650
Staab, M., Pufal, G., & Klein, A. M. (2023). Pollination networks in post-fire landscapes: The role of butterflies. Journal of Ecology, 111(4), 1158–1172. https://doi.org/10.1111/1365-2745.14090
Stefanescu, C., Herrando, S., & Páramo, F. (2009). Butterfly species richness in Mediterranean ecosystems: The role of climate and habitat heterogeneity. Biodiversity and Conservation, 18(3), 719–739. https://doi.org/10.1007/s10531-008-9523-7
Swengel, A. B. (2001). A literature review of insect responses to fire. Journal of Insect Conservation, 5(1), 79–96. https://doi.org/10.1023/A:1011339113237
Syaripuddin, S., Hussin, M. Z., Yaakop, S., Nor, S. R. M., & Shariff, N. M. (2021). Environmental controls on butterfly occurrence and species richness across multiple taxonomic groups in Malaysian ecosystems. PLoS ONE, 16(5), e0251234.
Tennent, W. J. (1996). Butterflies of the world: A natural history. Princeton University Press.
Tarrier, M., & Delacre, R. (2008). Les papillons de jour du Maroc: Guide d’identification et de bio-indication. Biotope.
Tolman, T., & Lewington, R. (1999). Collins Butterfly Guide: The Most Complete Guide to the Butterflies of Britain and Europe. HarperCollins.
Van Swaay, C. A. M. (2015). Monitoring butterfly populations: Methods and applications. Journal of Applied Ecology, 52(3), 781–787. https://doi.org/10.1111/1365-2664.12405
Véla, E., & Benhouhou, S. (2007). Mediterranean forest biodiversity: The case of the Kabylie-Numidie-Kroumirie region. Forest Ecology and Management, 248(1–2), 123–135. https://doi.org/10.1016/j.foreco.2007.02.035
Yahi, N., Derridj, A., & Lefebvre, C. (2012). Vegetation dynamics in Mediterranean forests after wildfire disturbances. Plant Ecology, 213(4), 549–560. https://doi.org/10.1007/s11258-011-9993-6
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2025 Acta Zoológica Lilloana

Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.