Equipo simulador de agua de lluvia para experimentos a campo en ecosistemas áridos y semiáridos

Contenido principal del artículo

Zhiming Xin
Jianqiang Qian
Carlos A. Busso
Bo Wu
Yajuan Zhu
Jinxin Zhang
Yonghua Li
Qi Lu

Resumen

Los cambios predichos en los modelos de precipitación como resultado del cambio global tienen efectos profundos en los ecosistemas terrestres. Un equipo que simule la lluvia es una herramienta de investigación efectiva para explorar los efectos de los cambios en los modelos de lluvia sin varias restricciones naturales. En el presente estudio, se presentan los principios y detalles de diseño de un equipo simulador de lluvia (RAINES) para estudios a campo en ecosistemas áridos y semiaridos. También se determinaron la intensidad de lluvia, validez y uniformidad del RAINES. Durante el período 2008 al 2010, nuestros datos mostraron que el RAINES fue capaz de simular eventos de lluvia con diferentes cantidades, frecuencias y momentos de lluvia. La mayor ventaja del RAINES fue su gran uniformidad en la distribución de la lluvia sobre una superficie experimental relativamente grande (>90 m2). Esto es importante para estudios experimentales en ecosistemas áridos y semiáridos donde la distribución de la vegetación es dispersa. La validez de la lluvia provista por el RAINES fue al menos de 66% siempre y cuando la presión hidráulica excedió los 1.4 KPa y la velocidad del viento fue menor que 2.5 m s-1.  El RAINES es de bajo peso, no costoso y lo suficientemente versátil como para ser usado para simular varios eventos de lluvia bajo condiciones de campo distantes. Es capaz de proveer lluvia simulada en forma confiable en el campo para estudiar la respuesta de procesos en el suelo y la vegetación a cambios en la cantidad de lluvia en ecosistemas áridos y semiáridos. El uso del RAINES mejorará nuestro entendimiento en la relación entre la disponibilidad de agua y los procesos en ecosistemas áridos y semiáridos. También proveerá conocimiento útil para la protección, restauración y menejo sustentable de ecosistemas de desierto áridos y semiáridos a escala mundial.

Descargas

La descarga de datos todavía no está disponible.

Detalles del artículo

Cómo citar
Xin, Z., Qian, J., Busso, C., Wu, B., Zhu, Y., Zhang, J., Li, Y., & Lu, Q. (2020). Equipo simulador de agua de lluvia para experimentos a campo en ecosistemas áridos y semiáridos. Lilloa, 57(1), 54-71. https://doi.org/10.30550/j.lil/2020.57.1/4
Sección
Artículos originales

Citas

Aboghobar, H. M. (1993). Evaporation and drift losses from sprinkler irrigation systems under hot and dry conditions. Journal of King Saud University 5: 153-164.

Bowman, B. T., Brunke, R., Reynolds, D., Wall, G. L. (1994). Rainfall simulatorgrid lysimeter system for solute transport studies using large, intact soil blocks. Journal of Environmental Quality 23: 815-822. DOI: 10.2134/jeq1994.00472425002300040029x

Chen, S., Lin, G., Huang, J., Mao, H. (2008). Responses of soil respiration to simulated precipitation pulses in semiarid steppe under different grazing regimes. Journal of Plant Ecology 1 (4): 237-246. DOI: 10.1093/jpe/rtn020

Chen, S. P., Lin, G. H., Huang, J. H., Jenerette, G. D. (2009). Dependence of carbon sequestration on the differential responses of ecosystem photosynthesis and respiration to rain pulses in a semiarid steppe. Global Change Biology 15 (10): 2450-2461. DOI: 10.1111/j.1365-2486.2009.01879.x

Chou, W. W., Silver, W. L., Jackson, R. D., Thompson, A. W., Allen Diaz, B. (2008). The sensitivity of annual grassland carbon cycling to the quantity and timing of rainfall. Global Change Biology 14 (6): 1382-1394. DOI: 10.1111/j.1365-2486.2008.01572.x

Dunkerley, D. (2008). Rain event properties in nature and in rainfall simulation experiments: a comparative review with recommendations for increasingly systematic study and reporting. Hydrological Processes 22 (22): 4415-4435. DOI: 10.1002/hyp.7045

Esteves, M., Planchon, O., Lapetite, J. M., Silvera, N., Cadet, P. (2000). The ‘EMIRE’ large rainfall simulator: design and field testing. Earth Surface Processes and Landfoms 25 (7): 681-690. DOI: 10.1002/1096-9837(200007)25:7<681::AIDESP124>3.0.CO;2-8

Fay, P. A., Carlisle, J. D., Knapp, A. K., Blair J. M., Collins, S. L. (2000). Altering rainfall timing and quantity in a mesic grassland ecosystem: design and performance of rainfall manipulation shelters. Ecosystems 3 (3): 308-319. DOI: 10.1007/s100210000028

Fay, P. A., Kaufman, D. M., Nippert, J. B., Carlisle, J. D., Harper, C. W. (2008). Changes in grassland ecosystem function due to extreme rainfall events: implications for responses to climate change. Global Change Biology 14 (7): 1600-1608. DOI: 10.1111/j.1365-2486.2008.01605.x

Floyd, C. (1981). A mobile rainfall simulator for small plot field experiments. Journal of Agricultural Engineering Research 26 (4): 307-314. DOI: 10.1016/0021-8634(81)90072-x

Gilley, J. R., Mielke, L. N., Wilhelm, W. W. (1983). An experimental center-pivot irrigation system for reduced energy crop production studies. Transaction of the ASAE 26 (5): 1375-1379. DOI: 10.13031/2013.34135

Heisler-White, J. L., Knapp, A. K., Kelly, E. F. (2008). Increasing precipitation event size increases aboveground net primary productivity in a semi-arid grassland. Oecologia 158 (1): 129-140. DOI: 10.1007/s00442-008-1116-9

Hudson, N. W. (1993). Field measurement of soil erosion and runoff. Food and Agriculture Organization of the United Nations (FAO), Rome, Italy.

Humphry, J. B., Daniel, T. C., Edwards, D. R., Sharpley, A. N. (2002). A portable rainfall simulator for plot-scale runoff studies. Applied Engineering in Agriculture 18 (2): 199-204. DOI: 10.13031/2013.7789

Huxman, T. E., Cable, J. M., Ignace, D. D., Eilts, J. A., English, N. B., Weltzin, J., Williams, D. G. (2004a). Response of net ecosystem gas exchange to a simulated precipitation pulse in a semi-arid grassland: the role of native versus non-native grasses and soil texture. Oecologia 141 (2): 295-305. DOI: 10.1007/s00442-003-1389-y

Huxman, T. E., Snyder, K. A., Tissue, D., Leffler,A. J., Ogle, K., Pockman, W. T., Sandquist, D. R., Potts, D. L., Schwinning, S. (2004b). Precipitation pulses and carbon fluxes in semiarid and arid ecosystems. Oecologia 141 (2): 254-268. DOI: 10.1007/s00442-004-1682-4

Lee, X., Wu, H. J., Sigler, J., Oishi, C., Siccama, T. (2004). Rapid and transient response of soil respiration to rain. Global Change Biology 10 (6): 1017-1026. DOI: 10.1111/j.1529-8817.2003.00787.x

Meyer, L. D. (1994). Rainfall simulators for soil erosion research, in: Lal, R., (Eds.), Soil erosion research methods. St. Lucie Press, Delray Beach, Florida, pp. 83–103.

Munster, C. L., Taucer, P. I., Wilcox, B. P., Porter, S. C., Richards, C. E. (2006). An approach for simulating rainfall above the tree canopy at the hillslope scale. Transaction of the ASABE 49 (4): 915-924. DOI: 10.13031/2013.21737

Nippert, J. B., Fay, P. A., Carlisle, J. D., Knapp, A. K., Smith, M. D. (2009). Ecophysiological responses of two dominant grasses to altered temperature and precipitation regimes. Acta Oecologica 35 (3): 400-408. DOI: 10.1016/j.actao.2009.01.010

Paige, G. B., Stone, J. J., Smith, J. R., Kennedy, J. R. (2004). The Walnut Gulch Rainfall Simulator: a computer-controlled variable intensity rainfall simulator. Applied Engineering in Agriculture 20 (1): 25-34. DOI: 10.13031/2013.15691

Pall, R., Dickinson, W. T., Beals, D., McGirr, R. (1983). Development and calibration of a rainfall simulator. Canadian Agricultural Engineering 25: 181-187.

Patrick, L., Cable, J., Potts, D., Ignace, D., Barron-Gafford, G., Griffith, A., Alpert, H., Van Gestel, N., Robertson, T., Huxman, T. E., Zak, J., Loik, M. E., Tissue, D. (2007). Effects of an increase in summer precipitation on leaf, soil, and ecosystem fluxes of CO2 and H2O in a sotol grassland in Big Bend National Park, Texas. Oecologia 151 (4): 704-718. DOI: 10.1007/s00442-006-0621-y

Patrick, L. D., Ogle, K., Bell, C. W., Zak, J., Tissue, D. (2009). Physiological responses of two contrasting desert plant species to precipitation variability are differentially regulated by soil moisture and nitrogen dynamics. Global Change Biology 15 (5): 1214-1229. DOI: 10.1111/j.1365-2486.2008.01750.x

Renard, K. (1985). Rainfall simulators and USDA erosion research: History, perspective, and future. in: Lane, L.J. (Eds.), Proceedings of Rainfall Simulation Workshop, Tucson, AZ. , Society for Range Manage, Denver, Colorado, pp. 3-6.

Robertson, T. R., Zak, J. C., Tissue, D. T. (2010). Precipitation magnitude and timing differentially affect species richness and plant density in the sotol grassland of the Chihuahuan Desert. Oecologia 162 (1): 185-197. DOI: 10.1007/s00442-009-1449-z

Schwinning, S., Sala, O. E., Loik, M. E., Ehleringer, J. R. (2004). Thresholds, memory, and seasonality: understanding pulse dynamics in arid/semi-arid ecosystems. Oecologia 141 (2): 191-193. DOI: 10.1007/s00442-004-1683-3

Sharpley, A. and Kleinman, P. (2003). Effect of rainfall simulator and plot scale on overland flow and phosphorus transport. Journal of Environment Quality 32 (6): 2172-2179. DOI: 10.2134/jeq2003.2172

Shelton, C. H., Von Bernuth, R. D., Rajbhandari, S. P. (1985). A continuous-application rainfall simulator. Transaction of the ASAE 28 (4): 1115-1119. DOI: 10.13031/2013.32397

Simanton, J., Weltz, M., Larsen, H. (1991). Rangeland experiments to parameterize the water erosion prediction project model: vegetation canopy cover effects. Journal of Range Management 44 (3): 276-282. DOI: 10.2307/4002957

Sponseller, R. A. (2007). Precipitation pulses and soil CO2 flux in a Sonoran Desert ecosystem. Global Change Biology 13 (2): 426-436. DOI: 10.1111/j.1365-2486.2006.01307.x

St Clair, S. B., Sudderth, E. A., Castanha, C., Torn, M. S., Ackerly, D. D. (2009). Plant responsiveness to variation in precipitation and nitrogen is consistent across the compositional diversity of a California annual grassland. Journal of Vegetation Science 20 (5): 860-870. DOI: 10.1111/j.1654-1103.2009.01089.x

Steiner, J., Kanemasu, E., Clark, R. (1983). Spray losses and partitioning of water under a center pivot sprinkler system. Transaction of the ASAE 26 (4): 1128-1134. DOI: 10.13031/2013.34090

Swanson, N. P. (1965). Rotating-boom rainfall simulator. Transaction of the ASAE 8: 71-72. DOI: 10.13031/2013.40430

Weltzin, J. F., Loik, M. E., Schwinning, S., Williams, D. G., Fay, P. A., Haddad, B. M., Harte, J., Huxman, T. E., Knapp, A. K., Lin, G., Pockman, W. T., Shaw, R. M., Small, E. E., Smith, M. D., Tissue, D. T., Zak, J. C. (2003). Assessing the

response of terrestrial ecosystems to potential changes in precipitation. Bioscience 53 (10): 941-952. DOI: 10.1641/0006-3568(2003)053[0941:ATROTE]2.0.CO;2

Wilcox, B. P., Wood, M. K., Tromble, J. T., Ward, T. J. (1986). A hand-portable single nozzle rainfall simulator designed for use on steep slopes. Journal of Range Management 39 (4): 375-377. DOI: 10.2307/3899784

Williams, J. D., Wilkins, D. E., McCool, D., Baarstad, L. L., Klepper, B. K., Papendick, R. I. (1998). A new rainfall simulator for use in low-energy rainfall areas. Applied Engineering in Agriculture 14 (3): 243-247. DOI: 10.13031/2013.19385

Zavaleta, E. S., Shaw, M. R., Chiariello, N. R., Thomas, B. D., Cleland, E. E., Field, C. B., Mooney, H. A. (2003). Grassland responses to three years of elevated temperature, CO2, precipitation, and N deposition. Ecological Monographs 73 (4): 585-604. DOI: 10.1890/02-4053