Cyanogenesis prospection in galled and non-galled tissues of Microgramma squamulosa (Polypodiaceae)

Contenido principal del artículo

Mariana Fernandes da Rocha
https://orcid.org/0000-0002-4377-4781
Isabella Rodrigues Lancellotti
https://orcid.org/0000-0002-4856-0694
Marcelo Guerra Santos
https://orcid.org/0000-0002-0680-4566

Resumen

Cyanogenic glycosides are defense substances that can produce hydrocyanic acid when they undergo hydrolysis as a result of herbivory, a process called cyanogenesis. Galls are neoformed structures of plant tissues induced by species-specific interactions between an inducer organism and a host plant. Earlier studies in Microgramma species have demonstrated that has a variation in cyanogenesis within and between populations, as well as in different plant organs. Microgramma squamulosa is an epiphytic fern that may contain stem galls induced by Tortrimosaica polypodivora (Lepidoptera: Tortricidae). Thus, the aim of the present study was to assess cyanogenesis seasonally and in different tissues (galled and non-galled) of M. squamulosa. The study was conducted in populations located in the Rio de Janeiro state, Brazil. Cyanogenesis was assessed using the Feigl-Anger paper test. A total of 260 galled and non-galled tissues were analyzed, 45 gall samples, 67 sterile leaves, 103 stems and 2 croziers. Cyanogenesis was detected in only three sterile leaf samples. In none of the samples were the stems or galls cyanogenic. The results corroborate the hypothesis that the stems of Microgramma squamulosa galled by Tortrimosaica polypodivora are not cyanogenic.

Descargas

La descarga de datos todavía no está disponible.

Detalles del artículo

Cómo citar
Rocha, M., Rodrigues Lancellotti, I., & Guerra Santos, M. (2020). Cyanogenesis prospection in galled and non-galled tissues of Microgramma squamulosa (Polypodiaceae). Lilloa, 57(2), 156-163. https://doi.org/10.30550/j.lil/2020.57.2/6
Sección
Artículos originales

Citas

Barbieri, P. R. B. (2005). Caracterização da estação chuvosa nas regiões sul e sudeste do Brasil associado com a circulação atmosférica. (MSc. Dissertation), Instituto Nacional de Pesquisas Espaciais, Brazil.

Boege, K. & Marquis, R. J. (2005). Facing herbivory as you grow up: the ontogeny of resistance in plants. Trends in Ecology and Evolution 20: 441-448. doi.org/10.1016/j.tree.2005.05.001.

Brown, J. W., Baixeras, J., Solorzano-Filho, J. A. & Kraus, J. E. (2004). Description and life history of an unusual fern-feeding tortricid moth (Lepidoptera: Tortricidae) from Brazil. Annals of the Entomological Society of America 97 (5): 865-871. doi.org/10.1603/0013-8746(2004)097[0865:DALHOA]2.0.CO;2

Buhrmester, R. A., Ebinger, J. E. & Seigler D. S. (2000). Sambunigrin and cyanogenic variability in populations of Sambucus canadensis (Caprifoliaceae). Biochemical Systematics and Ecology 28: 689-695. doi.org/10.1016/S0305-1978(99)00105-2.

Cooper-Driver, G. A. & Swain, T. (1976). Cyanogenic polymorphism in bracken in relation to herbivore predation. Nature 260: 604. doi.org/10.1038/260604a0.

Cooper-Driver, G. A., Finch, S., Swain, T. & Bernays, E. (1977). Seasonal variation in secondary plant compounds in relation to the palatability of Pteridium aquilinum. Biochemical Systematics and Ecology 5: 177-183. doi.org/10.1016/0305-1978(77)90002-3.

Francisco, I. A. & Pinotti, M. H. P. (2000). Cyanogenic Glycosides in Plants. Brazilian Archives of Biology and Technology 43: 487-492. dx.doi.org/10.1590/S1516-89132000000500007.

Gershenzon, J. (1983). Changes in the levels of plant secondary metabolllites underwater and nutrient stress. Recent Advances in Phytochemistry 18: 273-320. doi. org/10.1007/978-1-4684-1206-2_10.

Gleadow, R., Bjarnholt, N., Jørgensen, K., Fox, J. & Miller, R. (2011). Cyanogenic Glycosides. In: S. S. Narwal, L. Szajdak, D. A. Sampietro (Eds.), Soil Allelochemicals (pp. 283-310). Houston, Studium Press LLC.

Hadfield, P. R. H. & Dyer, A. F. (1988). Cyanogenesis in Gametophytes and Young Sporophytes of Bracken. Biochemical Systematics and Ecology 16: 9-13. doi.org/10.1016/0305-1978(88)90109-3.

Harper, N. L., Cooper-Driver, G. A. & Swain, T. (1976). A survey for cyanogenesis in ferns and gymnosperms. Phytochemistry 15: 1764-1767. doi.org/10.1016/S0031-9422(00)97475-2.

Hegnauer, R. (1977). Cyanogenic compounds as systematic markers in tracheophyta. Plant Systematics and Evolution 1: 191-209.

Isaias, R. M. S., Oliveira, D. C., Carneiro, R. G. S. & Kraus, J. E. (2014). Developmental Anatomy of Galls in the Neotropics: Arthropods Stimuli Versus Host Plant Constraints. In: G. W. Fernandes & J. C. Santos (Eds.), Neotropical Insect Galls (pp. 673-692). New York, Springer.

Kautz, S., Trisel, J. A. & Ballhorn, D. J. (2014). Jasmonic Acid Enhances Plant Cyanogenesis and Resistance to Herbivory in Lima Bean. Journal of Chemical Ecology 40:1186–1196. doi.org/10.1007/s10886-014-0524-z.

Koricheva, J. & Barton, K. E. (2012). Temporal changes in plant secondary metabolite production: patterns, causes and consequences. In: G. R. Iason, M. Dicke & S. E. Hartley (Eds.). The Ecology of Plant Secondary Metabolites: From Genes to Global Processes (pp. 34-55). Cambridge, University Press.

Lehn, C. R., Arana, M. D., Müller, G. A. & Bianchini, E. (2020). Occurrence of galls in Microgramma mortoniana (Polypodiopsida: Polypodiaceae) from a subtropical forest, Brazil. Lilloa 57 (1): 72–80. doi.org/10.30550/j.lil/2020.57.1/5.

Maia, V. C. & Santos, M. G. (2011). A new genus and species of gall midge (Diptera, Cecidomyiidae) associated with Microgramma vacciniifolia (Langsd. & Fisch.) Copel. (Polypodiaceae) from Brazil. Revista Brasileira de Entomologia 55 (1): 40-44. doi.org/10.1590/S0085-56262011000100008

Maia, V. C. & Santos, M. G. (2015 ). Record of insects in two fern species of the genus Microgramma (Polypodiaceae) in the Atlantic Rain Forest, Rio de Janeiro state, Brazil. Brazilian Journal of Biology 75: 253-254. doi.org/10.1590/1519- 6984.11114.

Miller, R. E., Gleadow, R. M. & Woodrow, I. E. (2004). Cyanogenesis in tropical Prunus turneriana: characterisation, variation and response to low light. Functional Plant Biology 31: 491-503. https://doi.org/10.1071/FP03218.

Oliveira, B. H. G. & Santos M. G. (2017). Cianogênese em tecidos galhados e não galhados de Microgramma vacciniifolia (Langsd & Fisch) Copel. Anais 2°CONAPESC. II Congresso Nacional de Pesquisa e Ensino em Ciências. Recuperado de https://editorarealize.com.br/revistas/conapesc/trabalhos/TRAB-ALHO_EV070_MD4_SA8_ID1287_02052017103317.pdf. 02 Set. 2019.

Santos, M. G., Carvalho, C. E. M., Kelecom, A., Ribeiro, M. L. R. C., Freitas, C. V. C., Costa, L. M. & Fernandes, L. V. G. (2005). Cianogênese em esporófitos de pteridófitas avaliada pelo teste do ácido pícrico. Acta Botânica Brasílica 19: 783- 788. doi.org/10.1590/S0102-33062005000400014.

Santos, M. G., Hanson, P., Maia, V. C. & Mehltreter, K. (2019). A review of galls on ferns and lycophytes. Environmental Entomology 48: 53–60. doi.org/10.1093/ee/nvy172.

Schreiner, I., Nafus, D. & Pimentel D. (1984). Effects of cyanogenesis in bracken fern (Pteridium aquilinum) on associated insects. Ecological Entomology 9: 69-79. https://doi.org/10.1111/j.1365-2311.1984.tb00699.x.

Vetter, J. (2000). Plant cyanogenic glycosides. Toxicon 38: 11-36. https://doi.org/10.1016/S0041-0101(99)00128-2.