Caracteres epidérmicos de especies xero-halófilas:

¿es el ambiente el principal factor determinante?

Autores/as

  • Vanesa Pérez Cuadra Laboratorio de Biología de Plantas Vasculares. INBIOSUR UNS–CONICET
  • Viviana Cambi Laboratorio de Biología de Plantas Vasculares. INBIOSUR UNS–CONICET

Palabras clave:

Halófitas, xerófitas, epidermis, hojas, tallos

Resumen

Pérez Cuadra Vanesa; Viviana Cambi. 2016. “Caracteres epidérmicos de especies xero-halófilas: ¿es el ambiente el principal factor determinante?”. Lilloa 53 (2). La epidermis es el tejido primario de protección de las plantas, constituido por células especia- lizadas para diferentes funciones. El objetivo de este trabajo es describir las características de las epidermis foliares y caulinares de 30 especies de una comunidad xero-halófila que habitan el Salitral de la Vidriera (Prov. Bs. As.) y evaluar posibles relaciones de las estruc- turas epidérmicas halladas con variables propias del microambiente edáfico en el que se de- sarrollan. Las muestras fueron tratadas mediante técnicas tradicionales para su estudio en superficie. Se observaron cutículas lisas y estriadas. La mayor parte de las especies presen- taron células epidérmicas de paredes rectas y engrosadas, mientras que en algunas se encontraron paredes onduladas y delgadas. Se encontraron aparatos estomáticos de diferen- tes tipos. Se hallaron tricomas glandulares y eglandulares: secretores de sal, con pequeños cristales de oxalato de calcio, cistolíticos, látigo, entre otros. Los tricomas se observaron dis- persos sobre la superficie del órgano o reunidos en nidos mixtos. Los tricomas hallados en gran cantidad resultaron tanto de paredes delgadas como gruesas y esclerosadas mientras que los de escasa densidad presentaron sus paredes siempre gruesas y esclerosadas. Tres especies presentaron glándulas de sal, protegidas en depresiones de la epidermis, levemente hundidas o a nivel epidérmico. Relacionando las características epidérmicas y las condiciones del ambiente edáfico en el que habitan las especies se encontró que existe una gran variación en la presencia/ausencia de las diferentes características, por lo que el estudio aislado de las características epidérmicas no constituye un buen indicador para definir a una planta como xero-halófila

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Adams J. 2007. Vegetation-climate interaction. Springer, Berlín, 232 pp.

Ancibor E. 1980. Estudio anatómico de la vegetación de la Puna de Jujuy. II. Anatomía de las plantas en cojín. Boletín de la Sociedad Argentina de Botánica 19: 157-202.

Ancibor E. 1981. Estudio anatómico de la vegetación de la Puna de Jujuy. III. Anatomía de las plantas en roseta. Lilloa 3: 125-136.

Ancibor E. 1982. Estudio anatómico de la vegetación de la Puna de Jujuy. IV. Anatomía de los subarbustos. Physis 41: 107-114.

Ancibor E. 1992. Anatomía ecológica de la vegetación de La Puna de Mendoza. I. Anatomía foliar. Parodiana 7: 63-76.

Andersen A., Lucchini F. F., Moriconi J., Fernández E. A. 2006. Variabilidad en la morfo-anatomía foliar de Lippia turbinata (Verbenaceae) en la provincia de San Luis (Argentina). Phyton 75: 137-143.

Apóstolo N. M. 2005. Caracteres anatómicos de la vegetación costera del Río Salado (noroeste de la Provincia de Buenos Aires, Argentina). Boletín de la Sociedad Argentina 40: 215-227.

Arambarri A. M., Freire S. E., Colares M. N., Bayón N. D., Novoa M. C., Monti C., Stenglein S. A. 2006. Leaf anatomy of medicinal shrubs and tres from gallery forests of the Paranaense Province (Argentina). Part I. Boletín de la Sociedad Argentina de Botánica 41: 233-268.

Arambarri A. M., Freire S. E., Bayón N. D., Colares M. N., Monti C., Novoa M. C., Hernández M. P. 2010. Micrografía foliar de arbustos y pequeños árboles medicinales de la Provincia Biogeográfica de las Yungas (Argentina). Kurtziana 35: 15-45.

Arambarri A. M., Novoa M. C., Bayón N. D., Hernández M. P., Colares M. N., Monti C. 2011. Ecoanatomía foliar de árboles y arbustos de los distritos chaqueños occidental y serrano (Argentina). Boletín de la Sociedad Argentina de Botánica 46: 251-270.

Ashraf M., Ozturk M., Ahmad M. S. A. 2010. Plant adaptation and phytoremediation. Springer, Nueva York, 481pp.

Budel J. M., Duarte M. R., de Moraes Santos C. A., Farago P. V. 2004a. Morfoanatomía foliar e caulinar de Baccharis dracunculifolia DC., Asteraceae. Acta Farmacéutica Bonaerense 23: 477-483.

Budel J. M., Duarte M. R., de Moraes Santos C. A. 2004b. Stem morpho-anatomy of Baccharis cylindrica (Less.) DC. (Asteraceae). Revista Brasileira de Ciéncias Framaceúticas 40: 93-99.

Budel J. M., Duarte M. R. 2008. Estudio farmacobotânico de partes vegetativas aéreas de Baccharis anomala DC., Asteraceae. Revista Brasileira de Farmacognosia 18: 761-768.

Budel J. M., Duarte M. R. 2009. Análise morfoanatômica comparativa de duas espécies de carqueja: Baccharis microcephala DC. e B. trímera (Less.) DC., Asteraceae. Brazilian Journal of Pharmaceutical Sciences 45: 75-85.

Cutler D. F., Botha T., Stevenson D. W. 2007. Plant anatomy, an applied approach. Blackwell Publishing, Singapur, 302 pp.

Delf E. M. 1915. The meaning of xerophily. The Journal of Ecology 3: 110-121.

Dickison W. C. 2000. Integrative Plant Anatomy. Academic Press, San Diego, 533 pp.

Dizeo de Strittmatter C. G. 1973. Nueva técnica de diafanización. Boletín de la Sociedad Argentina de Botánica 15: 126-129.

Endress P. K., Bass P., Gregory M. 2000. Systematic plant morphology and anatomy: 50 years of progress. Taxon 49: 401-434.

Fahmy G. M. 1997. Leaf anatomy and its relation to the ecophysiology of some non-succulent desert plants from Egypt. Journal of Arid Environments 36: 499-525.

Flowers T. J., Colmer T. D. 2008. Salinity tolerance in halophytes. New Phytologist 179: 945-963.

Flowers T. J., Galal H. K., Bromham L. 2010. Evolution of halophytes: multiple origins of salt tolerance in land plants. Functional Plant Biology 37: 604-612.

Freire S. E., Urtubey E., Giuliano D. A. 2007. Epidermal characters of Baccharis (Asteraceae) species used in traditional medicine. Caldasia 29: 23-38.

García M., Jáuregui D., Medina E. 2008. Adaptaciones anatómicas foliares en especies de Angiospermas que crecen en la zona costera del estado Falcón (Venezuela). Acta Botánica de Venezuela 31: 291-306.

Hanley M. E., Lamont B. B., Fairbanks M. M., Rafferty C. M. 2007. Plant structural traits and their role in anti-herbivore defence. Perspectives in Plant Ecology, Evolution and Systematics 8: 157-178.

Henry R. J. 2005. Plant diversity and evolution. CABI, Cambridge, 332 pp.

Johnson H. 1975. Plant pubescense: an ecological perspective. The Botanical Review 41: 233-258.

Juniper B. E., Cox G. C. 1973. The anatomy of the leaf surface: the first line of defence. Journal of Pesticide Science 4: 543-561.

Keddy P. A. 2007. Plants and Vegetation: Origins, Processes, Consequences. University Press, Cambridge, 666 pp.

Metcalfe C. R., Chalk L. 1950. Anatomy of the Dicotyledons; leaves, stem and wood in relation to taxonomy with notes on economic uses. Clarendon Press, Oxford, 1500 pp.

Metcalfe C. R., Chalk L. 1979. Anatomy of the Dicotyledons, Volume I. Clarendon Press. Oxford, 276 pp.

Molares S., Gonzáles S. B., Ladio A., Castro M. A. 2009. Etnobotánica, anatomía y caracterización físico-química del aceite esencial de Baccharis obovate Hook. Et Arn. (Asteraceae: Astereae). Acta Botánica Brasileira 23: 578-589.

Pérez Cuadra V. 2012. Anatomía ecológica de la vegetación del Salitral de la Vidriera. Tesis Doctoral. Universidad Nacional del Sur, Bahía Blanca, 196 pp.

Polić D., Luković J., Zorić L., Merkulov L., Knežević A. 2009. Morpho-anatomical differentiation of Suaeda maritima (L.) Dumort. 1827. (Chenopodiaceae) populations from inland and maritime saline area. Central European Journal of Biology 4: 117-129.

Pyykkö M. 1966. The leaf anatomy of East Patagonian xeromorphic plants. Annales Botanici Fennici 3: 453-622.

Ragonese A. M. 1990. Caracteres xeromorfos foliares de Nassauvia lagascae (Compositae). Darwiniana 30: 1-10.

Reinoso H., Sosa L., Reginato M., Luna V. 2005. Histological alterations induced by sodium sulfate in the vegetative anatomy of Prosopis stombulifera (Lam.) Benth. Wordl. Journal of Agricultural Sciences 1: 109-119.

Ruthsatz B. 1978. Las plantas en cojín de los semi-desiertos andinos del Noroeste Argentino. Darwiniana 21: 491-539.

Salama F. M., El-Naggar S. M., Ramadan T. 1999. Salt glands of some halophytes in Egypt. Phyton 39: 91-105.

Shields L. M. 1951. Leaf xeromorphy in dicotyledon species from a gypsum sand deposit. American Journal of Botany 38: 175-190.

Skelton R. P., Midgley J. J., Nyaga J. M., Johnson S. D., Cramer M. D.. 2012. Is leaf pubescence of Cape Proteaceae a xeromorphic or radiation-protective trait. Australian Journal of Botany 60: 104-113.

Taleisnik E. L., Anton A. M. 1988. Salt glands in Pappophorum (Poaceae). Annals of Botany 62: 383-388.

Van der Maarel A. 2005. Herbaceous plant ecology. Springer, Nueva York, 395 pp.

Wahid A. 2003. Physiological significance of morpho-anatomical features of the halophytes with particular reference to cholistan flora. International Journal of Agriculture and Biology 5: 207-212.

Ward D. 2009. The biology of deserts. Oxford University Press, Nueva York, 352 pp.

Zhu J. K. 2001. Plant salt tolerance. Trends in Plant Science 6: 66-71.

Zuloaga F. O., Morrone O., Belgrano M. J. 2008. Catálogo de las Plantas Vasculares del Cono Sur (Argentina, Sur de Brasil, Chile, Paraguay y Uruguay). Missouri Botanical Garden Press, Missouri, 3348 pp.

Descargas

Publicado

2017-12-07

Cómo citar

Pérez Cuadra, V., & Cambi, V. (2017). Caracteres epidérmicos de especies xero-halófilas:: ¿es el ambiente el principal factor determinante?. Lilloa, 53(2), 282–298. Recuperado a partir de http://www.lillo.org.ar/journals/index.php/lilloa/article/view/115

Número

Sección

Artículos originales

Artículos similares

También puede {advancedSearchLink} para este artículo.