Eficiencia de Porcellio laevis (Isopoda: Porcellionidae) como removedor de cadmio en suelos agrícolas, a nivel de laboratorio

Autores/as

DOI:

https://doi.org/10.30550/j.azl/2241

Palabras clave:

bioacumulación, contaminación, metal pesado, mortalidad, remoción

Resumen

El presente estudio tuvo como objetivo evaluar la eficiencia del isópodo terrestre Porcellio laevis en la remoción de cadmio (Cd) de suelos agrícolas contaminados a nivel de laboratorio. El estudio empleó un diseño experimental con cinco dosis y cuatro repeticiones, utilizando cloruro de cadmio (CdCl2) como contaminante. Se prepararon 10 kg de suelo franco arcilloso y se establecieron, un control, y cuatro dosis de Cd: 20 mg.Kg-1 (T1), 80 mg.Kg-1 (T2), 240 mg.Kg-1 (T3) y 400 mg.Kg-1 (T4). Se introdujeron 40 individuos de P. laevis por dosis y se incubaron durante 60 días. Se analizaron las características fisicoquímicas del suelo y las dosis de Cd en los suelos, y en los isópodos al inicio, y al final del estudio. Se evaluó la remoción de Cd (%R) y el factor de bioacumulación (FBA). Los resultados revelaron tasas de remoción de Cd del suelo que incrementaron con la dosis inicial de Cd y el tiempo de exposición, alcanzando un 86,9% en el tratamiento con 400 mg.Kg-1 Cd. Sin embargo, la tasa de mortalidad aumentó significativamente con la dosis de Cd, alcanzando un 92,5% en los tratamientos con 240 y 400 mg.Kg-1 Cd al final del estudio. Esta exposición al Cd provocó cambios morfológicos significativos en los isópodos, incluyendo reducción de tamaño, alteraciones en la pigmentación y deformidades en el caparazón. Estos hallazgos sugieren que P. laevis es un bioacumulador eficaz para la remediación de suelos agrícolas contaminados con Cd.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Al-Busaidi, A., Cookson, P., Yamamoto, T. (2005) Métodos de determinación del pH en suelos calcáreos: uso de electrolitos y efecto de suspensión. Revista australiana de investigación del suelo 43, 541-545. doi: 10.1071/SR04102

Atanes, E., Cuesta-García, B., Nieto-Márquez, A., Fernández Martínez, F. (2019). Un método mixto de separación-inmovilización para la eliminación de sales solubles y la estabilización de metales pesados en cenizas volantes de incineración de residuos sólidos urbanos. Revista de Gestión Ambiental, 240, 359–367. doi: 10.1016/j.jenvman.2019.03.122

Bautista-Medina, Y. B., Iannacone, J. (2020). Toxicidad del lodo de perforación minera en el bioindicador Porcellio laevis (Latreille, 1804) (Crustacea: Isopoda). Paideia XXI, 10, 95-119. doi: 10.31381/paideia.v10i1.2986

Berrío-Barragán, D. I. (2022). Verificación de la metodología analítica para la determinación de fósforo total en alimentos para animales en el laboratorio de química analítica del C.I. Turipaná – AGROSAVIA. Trabajo de grado, Universidad de Córdoba. Córdova, Argentina.

Bjørklund, G., Crisponi, G., Nurchi, V. M., Cappai, R., Buha Djordjevic, A., Aaseth, J. (2019). A review on coordination properties of thiol-containing chelating agents towards mercury, cadmium, and lead. Molecules, 24(18), 3247. doi: 10.3390/molecules24183247

Cao, X., Ma, L.Q., Chen, M., Hardison, D.W., Harris, W.G. (2003). Lead transformation and distribution in the soils of shooting ranges in Florida, USA. Science of the Total Environment, 307, 179–189. doi: 10.1016/S0048-9697(02)00543-0

Chellaiah, E. R. (2018). Cadmium (heavy metals) bioremediation by Pseudomonas aeruginosa: A minireview. Applied Water Science, 8(6), 1-10. doi: 10.1007/s13201-018-0796-5

Chen, D., Chen, D., Xue, R., Long, J., Lin, X., Lin, Y., Song, Y. (2019). Effects of boron, silicon and their interactions on cadmium accumulation and toxicity in rice plants. Journal of Hazardous Materials, 367, 447-455. doi: 10.1016/j.jhazmat.2018.12.111

Chen, W., Wang, Y., Sun, Y., Fang, G., Li, Y. (2022). Release of soluble ions and heavy metal during fly ash washing by deionized water and sodium carbonate. Chemosphere, 307, 135860. doi: 10.1016/j.chemosphere.2022.135860

Cooper, E. M., Sims, J. T., Cunningham, S. D., Huang, J. W., Berti, W. R. (1999). Chelate-assisted phytoextraction of lead from contaminated soils. Journal of Environmental Quality, 28(6), 1709–1719. doi: 10.2134/jeq1999.00472425002800060004x

Cortet, J., Gomot-De Vauflery, A., Poinsot-Balaguer, N., Gomot, L., Texier, C., Cluzeau, D., (1999). The use of invertebrate soil fauna in monitoring pollutant effects. European Journal of Soil Biology 35, 115–134. doi: 10.1016/S1164-5563(00)00116-3

Ekperusi, O. A., Aigbodion, F. I. (2015). Bioremediation of petroleum hydrocarbons from crude oil-contaminated soil with the earthworm: Hyperiodrilus africanus. 3 Biotech, 5, 957-965. doi: 10.1007/s13205-015-0298-1

Ferrer-Bustos, D. (2017). Estudio de los procesos de adsorción-desorción de Cu, Mn, Pb y Zn en suelos chilenos. Tesis de Título. Universidad de Chile. Santiago de Chile. Chile.

Fija?kowski, K., Kacprzak, M., Grobelak, A., Placek, A. (2012). The influence of selected soil parameters on the mobility of heavy metals in soils. In?ynieria i Ochrona ?rodowiska, 15(1), 81-92.

García-Bravo, N. B. (2024). Evaluación de la calidad del agua que descarga la planta de tratamiento de la Urbanización El Condado, Sector 2. Tesis de pregrado, Universidad Laica Vicente Rocafuerte. Guayaquil, Ecuador.

Ghannem, S., Touaylia, S., Bejaoui, M. (2018). Assessment of trace metals contamination in soil, leaf litter and leaf beetles (Coleoptera, Chrysomelidae) in the vicinity of a metallurgical factory near Menzel Bourguiba (Tunisia). Human and Ecological Risk Assessment, 24, 991–1002. doi: 10.1080/10807039.2017.1405338

Ghemari, C., Waterlot, C., Ayari, A., Leclercq, J., Douay, F., Nasri-Ammar, K. (2017). Assessment of heavy metals in soil and terrestrial isopod Porcellio laevis in Tunisian industrialized areas. Environmental Earth Sciences, 76, 623. doi: 10.1007/s12665-017-6946-5

Ghemari, C., Ayari, A., Hamdi, N., Waterlot, C., Douay, F., Nasri-Ammar, K. (2018). Measure of environmental stress on Porcellio laevis Latreille, 1804 sampled near active Tunisian industrial areas. Ecotoxicology, 27, 729–741. doi: 10.1007/s10646-018-1955-z

Ghemari, C., Waterlot, C., Leclercq, J., Douay, F., Nasri-Ammar, K. (2014). Metal bioaccumulation in Porcellio laevis and Porcellionides pruinosus from Tunisian contaminated sites. Proceeding of the 9th ISTIB (International Symposium in Terrestrial Isopods Biology, Poitiers, 26–30 June.

Ghemari, C., Waterlot, C., Ayari, A., Douay, F., Nasri-Ammar, K. (2019). Effects of heavy metals artificial contamination on Porcellio laevis (Latreille, 1804) (Crustacea: Isopoda: Oniscidea). Bulletin of Environmental Contamination and Toxicology, 103, 416-420. doi: 10.1007/s00128-019-02684-0

Ghemari, C., Waterlot, C., Ayari, A., Douay, F., Nasri-Ammar, K. (2020). Bioaccumulation of heavy metals in the terrestrial isopod Porcellionides pruinosus in the vicinity of Gabes-Ghannouch industrial complex. Human and Ecological Risk Assessment: An International Journal, 26, 1270-1284. doi: 10.1080/10807039.2018.1564621

Godet, J. P., Demuynck, S., Waterlot, C., Lemière, S., Souty-Grosset, C., Scheifler, R., Douay, F., Leprêtre, A., Pruvot, C. (2011). Growth and metal accumulation in Porcellio scaber exposed to poplar litter from Cd-, Pb-, and Zn-contaminated sites. Ecotoxicology and Environmental Safety, 74, 607-616. doi: 10.1016/j.ecoenv.2010.09.007

Grigoriou, P. (2005). The growth and physiology of the common cuttlefish Sepia officinalis (L.) (Mollusca: Cephalopoda). Ph.D. dissertation. University of Wales.

Gul, I., Manzoor, M., Hashim, N., Shah, G. M., Waani, S. P. T., Shahid, M., ... Arshad, M. (2021). Challenges in microbially and chelate-assisted phytoextraction of cadmium and lead–A review. Environmental Pollution, 287, 117667. doi: 10.1016/j.envpol.2021.117667

Gusiatin, Z. M., Kulikowska, D. (2016). Behaviors of heavy metals (Cd, Cu, Ni, Pb, and Zn) in soil amended with composts. Environmental Technology, 37(18), 2337-2347. doi: 10.1080/09593330.2016.1150348

Gutiérrez-González, D., Urrea-García, G. R., Luna-Solano, G., Cantú-Lozano, D., Gómez-Rodríguez, J. (2019). Análisis dinámico del ciclo de adsorción/desorción en el proceso de deshidratación de etanol. Memorias del Congreso Nacional de Control Automático, 23-25 de octubre de 2019, Puebla, Puebla, México, pp. 833-838.

Haider, F. U., Liqun, C., Coulter, J. A., Cheema, S. A., Wu, J., Zhang, R., Farooq, M. (2021). Cadmium toxicity in plants: Impacts and remediation strategies. Ecotoxicology and Environmental Safety, 211, 111887. doi: 10.1016/j.ecoenv.2020.111887

Hammer, Ø. (2020). PAST paleontological statistics v. 4.03: Reference Manual. Oslo: University of Oslo. Oslo, Finland.

Heikens, A., Peijnenburg, W. J. G. M., Hendriks, A. J. (2001). Bioaccumulation of heavy metals in terrestrial invertebrates. Environmental Pollution, 113(3), 385-393. doi: 10.1016/S0269-7491(00)00179-2

Henríquez, C. (2018). Transferencia suelo-planta de Cadmio en hortalizas cultivadas en un Andisol. Tesis de Maestría. Universidad Austral de Chile, Valdivia, Chile.

Hopkin, S. P., Martin, M. H. (1984). Assimilation of zinc, cadmium, lead, and copper by the centipede Lithobius variegatus (Chilopoda). Journal of Applied Ecology, 21, 535-546. doi: 10.2307/2403427

Hopkin, S. P. (1989). Ecophysiology of metals in terrestrial invertebrates (pp. xiii-366). Springer Dordrechtm Wien, Austria.

Hopkin, S. P. (1990). Species-specific differences in the net assimilation of zinc, cadmium, lead, copper, and iron by the terrestrial isopods Oniscus asellus and Porcellio scaber. Journal of Applied Ecology, 27, 460-474. doi: 10.2307/2404294

Huang, D., Gong, X., Liu, Y., Zeng, G., Lai, C., Bashir, H., Wan, J. (2017). Effects of calcium at toxic concentrations of cadmium in plants. Planta, 245, 863-873. doi. 10.1007/s00425-017-2664-1

Iannacone, J., Alayo, M., Abanto, M., Sanchez, J., Zapata, E. (2001). Porcellio laevis Latreille, 1804 (Isopoda: Porcellionidae) como bioindicador para evaluación de plomo. Revista Peruana de Entomología, 42, 175-183.

Iannacone, J., Alvariño, L., Murrugarra, Y., Arrascue, A., Alayo, M., Salazar, N. (2008). Selectividad del insecticida metamidofos en ocho organismos terrestres no destinatarios. Journal of Brazilian Society of Ecotoxicology, 3, 23-34. doi. 10.5132/jbse.2008.01.004

Keshavarz, J. M., Verweij, R. A., Van Gestel, C. A., Van Straalen, N. M. (2017). Toxicokinetics and time?variable toxicity of cadmium in Oppia nitens Koch (Acari: Oribatida). Environmental Toxicology and Chemistry, 36, 408-413. doi: 10.1002/etc.3548

Khemaissia, H., Jelassi, R., Ghemari, C., Raimond, M., Souty-Grosset, C., Nasri-Ammar, K. (2019). Evaluation of trace element contamination using Armadillo officinalis Duméril, 1816 (Crustacea, Isopoda) as a tool: An ultrastructural study. Microscopy Research and Technique, 82, 2014-2025. doi: 10.1002/jemt.23371

Koçak, ?., Ba?datl?, S., ?kican, K., Ertu?, N. D. Y. (2023). Histopathological effects of environmental pollutants on the reproductive system of zebrafish. Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 11, 2103-2136. doi: 10.29130/dubited.1182330

Krásný, J., Sharp, J. (2007). Groundwater in fractured rocks: IAH selected paper series, vol 9, CRC Press, Taylor & Francis, Wallingford, UK.

Lardies, M. A., Bozinovic, F. (2008). Genetic variation for plasticity in physiological and life-history traits among populations of an invasive species, the terrestrial isopod Porcellio laevis. Evolutionary Ecology Research, 10, 747-762.

Li, J., Lin, Q., Xu, S. (2023). Desorption and migration characteristics of Cu/Cd composite contaminated soil under different pH/ionic strength. Acta Pedologica Sinica, 60, 1026-1034. doi. 10.11766/trxb202108080413

López-Falcón, R. A. (2011). Materia orgánica y multifuncionalidad del suelo. Taller "Introducción a la Química Agrícola", Universidad de Los Andes, Mérida, Venezuela.

Malyan, S. K., Singh, R., Rawat, M., Kumar, M., Pugazhendhi, A., Kumar, A., Kumar, S. S. (2019). An overview of carcinogenic pollutants in groundwater of India. Biocatalysis and Agricultural Biotechnology, 21, 101288. doi: 10.1016/j.bcab.2019.101288

Mazzei, V., Longo, G., Brundo, M. V., Sinatra, F., Copat, C., Conti, G. O., Ferrante, M. (2014). Bioaccumulation of cadmium and lead and its effects on hepatopancreas morphology in three terrestrial isopod crustacean species. Ecotoxicology and Environmental Safety, 110, 269-279. doi. 10.1016/j.ecoenv.2014.09.015

McGeer, J. C., Szebedinszky, C., McDonald, D. G., Wood, C. M. (2000). Effects of chronic sublethal exposure to waterborne Cu, Cd, or Zn in rainbow trout: Iono-regulatory disturbance and metabolic costs. Environmental Toxicology and Chemistry, 19, 2064-2072. doi. 10.1016/S0166-445X(99)00106-X

Medfu, T. M., Zewdu, S. F., Ishetu, A.I. (2020). Microbes used as a tool for bioremediation of heavy metal from the environment. Cogent Food & Agriculture, 6, 1783174. doi: 10.1080/23311932.2020.1783174

Meshjel, M.H. (2025). Terrestrial isopoda as Model Organisms in Soil Ecotoxicology. Dijlah Journal of Agriculture Sciences, 3, 75-85.

Miti?, B., Borkovi?-Miti?, S., Stojsavljevi?, A., Stojanovi?, D., Pavlovi?, S., Vasiljevi?, L., Risti?, N. (2022). Metal and metalloid bioaccumulation in three centipedes (Chilopoda). Archives of Biological Sciences, 74, 207-215.

Mohammad, W., Mohammed, T., El-Wakeil, K.A., M. M. Hassan, M.M. (2022). Effects of combined treatment of cadmium and oxytetracycline on the terrestrial isopod Porcellio leavis. Brazilian Journal of Biology, 82, e246979. doi: 10.1590/1519-6984.246979

Moreno, P. A. R., Medesani, D. A., Rodríguez, E. M. (2003). Inhibition of molting by cadmium in the crab Chasmagnathus granulata (Decapoda Brachyura). Aquatic Toxicology, 64, 155-164. doi. 10.1016/s0166-445x(03)00029-8

Munir, N., Hasnain, M., Roessner, U., Abideen, Z. (2021). Estrategias para mejorar la resistencia de las plantas a la salinidad y el uso de plantas resistentes a la salinidad para la sostenibilidad económica. Critical Reviews in Environmental Science and Technology, 52, 2150–2196. doi: 10.1080/10643389.2021.1877033

Novak, S., Drobne, D., Menard, A. (2012). Prolonged feeding of terrestrial isopod (Porcellio scaber, Isopoda, Crustacea) on TiO2 nanoparticles. Absence of toxic effect. ZooKeys, 176, 261-273. doi: 10.3897/zookeys.176.2463

Odendaal, J. P., Reinecke, A. J. (1999). The toxicity of sublethal lead concentrations for the woodlouse, Porcellio laevis (Crustacea, Isopoda). Biology and Fertility of Soils, 29, 147-152. doi: 10.1007/s003740050537

Odendaal, J. P. (2002). Histological change in the hepatopancreas of terrestrial isopods as potential biomarker of cadmium and zinc exposure. Tesis doctoral. University of Stellenbosch, Stellenbosch, South Africa.

Owojori, O. J., Siciliano, S. D. (2012). Accumulation and toxicity of metals (copper, zinc, cadmium, and lead) and organic compounds (geraniol and benzo [a] pyrene) in the oribatid mite Oppia nitens. Environmental Toxicology and Chemistry, 31, 1639-1648. doi: 10.1002/etc.1857

Panza, G., Montanari, M., Lopez, D., Burattini, S., Ciacci, C., Fumelli, P.P., Pasini, G., Fusi, V., Giorgi, L., Grandoni, F., Papa, S., Santolini, R., Canonico, B. (2024). Flow cytometric analysis of hepatopancreatic cells from Armadillidium vulgare highlights terrestrial isopods as efficient environmental bioindicators in ex vivo settings. Environmental Science and Pollution Research, 31, 9745–9763. doi: 10.1007/s11356-023-31375-x

Pérez, M. I., Arcia, M. (2024). Hydrological properties of the soil in a micro-watershed of Filo del Tallo, Darién. Revista de I+D Tecnológico, 20, 61-72.

Proc, K., Bulak, P., Kaczor, M., Bieganowski, A. (2021). A new approach to quantifying bioaccumulation of elements in biological processes. Biology, 10(4), 345. doi: 10.3390/biology10040345

Rainbow, P.S., White, S.L. (1989). Comparative strategies of heavy metal accumulation by crustaceans: zinc, copper and cadmium in a decapod, an amphipod and a barnacle. Hydrobiologia, 174, 245-262. doi: 10.1007/BF00008164

Ramadan, S.A., Ismail, T.G., El-Rahman, A.A. (2024). Redescription of terrestrial isopod Porcellio laevis collected from Sohag Governorate, Egypt with an overview of epicuticular structures using scanning electron microscopy. Sohag Journal of Science, 9, 350-356. doi: 10.21608/sjsci.2024.258865.1169

Reyes, Y. C., Vergara, I., Torres, O. E., Díaz, M., González, E. E. (2016). Contaminación por metales pesados: Implicaciones en salud, ambiente y seguridad alimentaria. Revista Ingeniería, Investigación y Desarrollo, 16, 66-77. doi: 10.19053/1900771X.v16.n2.2016.5447

Ritchie, G.S.P., Dolling, P.J. (1985). The role of organic matter in soil acidification. Soil Research 23, 569-576. doi: 10.1071/SR9850569

Rittmann, B., McCarty, P. (2001). Environmental biotechnology: Principles and applications. McGraw-Hill Education. New York, USA.

Ruthsatz, K., Dausmann, K. H., Drees, C., Becker, L. I., Hartmann, L., Reese, J., Sabatino, N. M., Peck, M. A., Glos, J. (2018). Altered thyroid hormone levels affect body condition at metamorphosis in larvae of Xenopus laevis. Journal of Applied Toxicology, 38, 1289–1299. doi: 10.1002/jat.3663

Shanmugaraj, B. M., Malla, A., Ramalingam, S. (2019). Cadmium stress and toxicity in plants: An overview. In M. Hasanuzzaman, M. Prasad, M. Fujita (Eds.), Cadmium toxicity and tolerance in plants (pp. 1-17). Elsevier. doi: 10.1016/B978-0-12-814864-8.00001-2

Sharaff, M. M., Subrahmanyam, G., Kumar, A., Yadav, A. N. (2020). Mechanistic understanding of the root microbiome interaction for sustainable agriculture in polluted soils. In: Gupta, V.J., Zeilinger, S., Singh, H.B., Druzhinina, I. (eds.). New and future developments in microbial biotechnology and bioengineering. Recent Developments in Trichoderma Research. (pp. 61-84). Elsevier. doi. 10.1016/B978-0-12-820526-6.00005-1

Simba, V. E. (2024). Estudio comparativo ex-situ de la capacidad de biorremediación de Porcellio scaber y Eisenia foetida en el tratamiento de suelos contaminados por petróleo, extraídos del sector Piedra Fina-Parroquia Gonzalo Díaz de Pineda, Cantón El Chaco, Provincia de Napo, 2024. Trabajo de Grado, Universidad Central del Ecuador, Quito, Ecuador.

Singh, K., Singh, R., Malyan, S. K., Rawat, M., Kumar, P., Kumar, S., Pandey, G. (2018). Health risk assessment of drinking water in Bathinda district, Punjab, India. Journal of Indian Water Resources, 38, 34-41.

Skubala, P., Kafel, A. (2004). Oribatid mite communities and metal bioaccumulation in oribatid species (Acari, Oribatida) along the heavy metal gradient in forest ecosistems. Environmental Pollution, 132, 51-60. doi: 10.1016/j.envpol.2004.03.025

Song, Y., Jin, L., Wang, X. (2016). Cadmium absorption and transportation pathways in plants. International Journal of Phytoremediation, 19, 133–141. doi: 10.1080/15226514.2016.1207598

Sousa, J.P., Loureiro, S., Pieper, S., Frost, M., Kratz, W., Nogueira, A.J.A., Soares, A.M.V.M. (2000). Soil and plant diet exposure routes and toxicokinetics of lindane in a terrestrial isopod. Environmental Toxicology and Chemistry, 19, 2557–2563. doi: 10.1002/etc.5620191023

Staub, G. C. (1983). Effects and mechanism of action of naphthalene, a petroleum-derived polycyclic aromatic hydrocarbon, on black pigment dispersion in the salt marsh fiddler crab, Uca pugilator. Tesis doctoral, Tulane University. Nueva Orleans, EE. UU.

Strosser, E. (2010). Methods for determination of labile soil organic matter: an overview. Journal of Agrobiology, 27, 49. doi:10.2478/s10146-009-0008-x

Tourinho, P. S., van Gestel, C. A. M., Lofts, S., Soares, A. M. V. M., Loureiro, S. (2013). The effects of soil pH on the toxicity of ZnO nanoparticles (NPs) to the terrestrial isopod Porcellionides pruinosus were evaluated. Isopods were exposed to a natural soil amended with CaCO. Environmental Toxicology and Chemistry, 32, 2808-2815. doi: /10.1002/etc.2369

Van Straalen, N. M. Butovsky, R. O., Pokarzhevski, A. D., Zaitsev, A. S., Verhoef, S. C. (2001). Metal concentrations in soil and invertebrates in the vicinity of a metallurgical factory near Tula (Russia). Pedobiologia, 45, 451-466. doi: 10.1078/0031-4056-00099

Vijver, M. G., Vink, J. P., Jager, T., Van Straalen, N. M., Wolterbeek, H. T., Van Gestel, C. A. (2006). Kinetics of Zn and Cd accumulation in the isopod Porcellio scaber exposed to contaminated soil and/or food. Soil Biology and Biochemistry, 38, 1554-1563. doi: 10.1016/j.soilbio.2005.11.006

Vittori, M., Dominko, M. (2022). A bibliometric analysis of research on terrestrial isopods. Zookeys, 18, 13–34. doi: 10.3897/zookeys.1101.81016

Witzel, B. (2000). The influence of zinc on the uptake and loss of cadmium and lead in the woodlouse, Porcellio scaber (Isopoda, Oniscidea). Ecotoxicology and Environmental Safety, 47, 43-53. doi: 10.1006/eesa.2000.1940

Wolters, V. (2000). Invertebrate control of soil organic matter stability. Biology and Fertility of Soils, 31, 1–19. doi: 10.1007/s003740050618

Zhang, F., Li, H. (2022). Effects of landscape restoration on migration of lead and cadmium at an abandoned mine site. Frontiers in Environmental Science, 10, 1057961. doi: 10.3389/fenvs.2022.1057961

Zidar, P., Van Gestel, C. A., Štrus, J. (2009). Single and joint effects of Zn and Cd on Porcellio scaber (Crustacea, Isopoda) exposed to artificially contaminated food. Ecotoxicology and environmental safety, 72, 2075-2082. doi: 10.1016/j.ecoenv.2009.06.009

Zidar, P., Fišer, Z. (2022). Avoidance behaviour toxicity tests should account for animal gregariousness: a case study on the terrestrial isopod Porcellio scaber. Zookeys, 18, 87–108. doi: 10.3897/zookeys.1101.76711

Eficiencia de Porcellio laevis (Isopoda: Porcellionidae) como removedor de cadmio en suelos agrícolas, a nivel de laboratorio

Descargas

Publicado

2025-10-17

Cómo citar

Francia Chang, M. ., Dianderas Cordova, N. ., & Iannacone, J. (2025). Eficiencia de Porcellio laevis (Isopoda: Porcellionidae) como removedor de cadmio en suelos agrícolas, a nivel de laboratorio. Acta Zoológica Lilloana, 689–713. https://doi.org/10.30550/j.azl/2241
سرور مجازی ایران Decentralized Exchange

Número

Sección

Artículos
فروشگاه اینترنتی صندلی اداری جوراب افزایش قد ژل افزایش قد خرید vpn سرور مجازی بایننس