Dinámica de la sedimentación de las facies someras de la cuenca Puncoviscana en la transición Neoproterozoico- Cámbrico inferior, NO de Argentina
DOI:

Palabras clave:
Formación Puncoviscana, secuencia mareal, paleocorrientes polimodales, Neoproterozoico – Cámbrico inferior, NO de ArgentinaResumen
Los depósitos del Neoproterozoico-Cámbrico inferior del NO argentino conforman el relleno de la cuenca Puncoviscana. Ésta representa una cuenca marina de foreland, elongada, abierta hacia el norte, desarrollada entre los terrenos Amazonia, Antofalla y Pampia, que deriva de la fragmentación de Rodinia. La cuenca registra sedimentación de diamictitas basales y depósitos de plataforma hasta marino profundos hacia el este, seguidos de carbonatos post-glaciales y transicionalmente secuencias clásticas someras con intercalaciones piroclásticas (Formación Puncoviscana). La Formación Puncoviscana, marino somera, contiene estructuras sedimentarias diagnósticas de ambientes intermareales y submareales someros. Los procesos mareales son evidenciados a partir de estratificación lenticular a flaser, convoluta, ritmitas mareales, estratificación en hueso de arenque y ondulitas de doble cresta. La asociación de facies corresponde a ambientes de cara de playa a lo largo del margen occidental, que evolucionan hacia planicie mareal lateral y hacia arriba en la secuencia. Las mareas actuaron sobre costas de régimen mesomareal, mientras que el análisis de paleocorrientes demuestra patrones bimodales bipolares, y polimodales debido a flujos reversibles N-S de flujo-reflujo, y deriva litoral. Las poblaciones de edad en zircones publicadas, aportados a la Formación Puncoviscana, evidencian que la subsidencia de la cuenca fue episódica. El estadio inicial de fallamiento activo y subsidencia (~570-545 Ma, sección inferior de la Formación Puncoviscana) fue seguido de por un episodio de ~10 Ma de aumento del nivel del mar (sección media de la Formación Puncoviscana) y uno final de ~20 Ma que incluyó actividad tecto-magmática que progresó hacia el levantamiento y cierre de la cuenca.
Descargas
Citas
Aceñolaza, F.G. and Toselli, A.J. 2009. The Pampean Orogen: Ediacaran-Lower Cambrian evolutionary history of Central and Northwest region of Argentina. In: Gaucher, C., Sial, A.N., Halverson, G.P. and Frimmel, H. (eds.). Neoproterozoic-Cambrian Tectonics, Global Change and Evolution: a focus on southwestern Gondwana. Developments in Precambrian Geology 16, Amsterdam, Elsevier, p. 239-254. DOI: https://doi.org/10.1016/S0166-2635(09)01618-1
Aceñolaza, F.G. and Aceñolaza, G.F. 2005. La Formación Puncoviscana y unidades estratigráficas vinculadas en el Neoproterozoico-Cámbrico temprano del noroeste argentino. Latin American Journal of Sedimentology and Basin Analysis 12 (2): 65-87.
Aceñolaza, G.F. and Aceñolaza, G.F. 2007. Insights in the Neoproterozoic / Early Cambrian transition of NW Argentina: facies, environments and fossils in the Proto Margin of Western Gondwana. The Rise and the Fall of the Ediacara Biota. London, Geological Society of London Special Publication 286: 1-13. DOI: https://doi.org/10.1144/SP286.1
Aceñolaza, G.F., Toselli, A.J., Miller, H. and Adams, C. 2010. Interpretación de las poblaciones de circones detríticos en Unidades estratigráficas equivalentes del Ediacarano-Cámbrico de Argentina. In: Aceñolaza, F.G. (ed.). Ediacarano-Cámbrico Inferior Gondwana I. Serie de Correlación Geológica 26: 49-64.
Aguilar-Ramírez, C., Camprubí, A., Fitz-Díaz, E., Cienfuegos-Alvarado, E. and Morales-Puente, P. 2017. Variación en la composición isotópica del agua meteórica a lo largo de la sección centro-noreste de la Sierra Madre Oriental. Boletín de la Sociedad Geológica Mexicana 69(2): 447 ? 463. DOI: https://doi.org/10.18268/BSGM2017v69n2a9
Adams, C., Miller, H. and Toselli, A.J. 2008. Detrital zircon U-Pb ages of the Puncoviscana Formation, Late Neoproterozoic – Early Cambrian, of NW Argentina: provenance area and maximum age of deposition. VI South American Symposium on Isotope Geology (VI SSAGI), Abstracts, 152.
Allen, J.R.L. 1968. Current ripples. Their relation to patterns of water and sediment motion. North Holland Publ. Co. 433 p.
Allen, J.R.L. 1984. Sedimentary structures: their character and physical basis. Developments in Sedimentology 30, Unabridged One-Volume, 2nd edn. Elsevier, Amsterdam. 1256 pp.
Almeida, F.F.M., Brito Neves, B.B. and Carneiro, C.D.R. 2000. Origin and evolution of the South American platform. Earth Science Reviews 50: 77–111. DOI: https://doi.org/10.1016/S0012-8252(99)00072-0
Anderson, T.F. and Raiswell, R. 2004. Sources and mechanisms for the enrichment of highly reactive iron in euxinic Black Sea sediments. American Journal of Science 304: 203–233. DOI: https://doi.org/10.2475/ajs.304.3.203
Aparicio González, P.A. 2014. El basamento estratigráfico (Proterozoico superior-Cámbrico inferior) en la Sierra de Mojotoro, tramo austral de la Cordillera Oriental. Universidad Nacional de Salta, Doctoral Thesis (inedit). 230 pp.
Aparicio González, P.A., Moya, M.C. and Impiccini, A. 2010. Estratigrafía de las rocas metasedimentarias (Neoproterozoico-Cámbrico) de la Sierra de Mojotoro, Cordillera Oriental, Argentina. Latin American Journal of Sedimentology and Basin Analysis 17(2): 65-83.
Aparicio González, P.A., Pimentel, M.M. and Hauser, N. 2011. Datación U-Pb por LA-ICP-MS de diques graníticos del Ciclo Pampeano, Sierra de Mojotoro, Cordillera Oriental. Revista de la Asociación Geológica Argentina 68 (1): 33-38.
Archer, A.W. 2013. World's highest tides: Hypertidal coastal systems in North America, South America and Europe. Sedimentary Geology 284–285: 1–25. DOI: https://doi.org/10.1016/j.sedgeo.2012.12.007
Banner J.L. and Hanson G.N. 1990. Calculation of simultaneous isotopic and trace element variations during water rock interaction with application to carbonate diagenesis. Geochimica et Cosmochimica Acta, 54: 3123-3137. DOI: https://doi.org/10.1016/0016-7037(90)90128-8
Brand U. and Veizer J. 1980. Chemical diagenesis of a multicomponent carbonate system-1: Trace elements. Journal of Sedimentary Petrology 50: 1219-1236. DOI: https://doi.org/10.1306/212F7BB7-2B24-11D7-8648000102C1865D
Bourgeois, J. 1980. A transgressive shelf sequence exhibiting hummocky cross stratification: The Cape Sebastian Sandstone (Upper Cretaceous), southwestern Oregon. Journal of Sedimentary Petrology 50: 681-702. DOI: https://doi.org/10.1306/212F7AC2-2B24-11D7-8648000102C1865D
Brito Neves, B.B. and Fuck, R.A. 2013. Neoproterozoic evolution of the South-American platform. Journal of South American Earth Sciences 47: 72-89. DOI: https://doi.org/10.1016/j.jsames.2013.04.005
Brito Neves, B.B., Fuck, R.A. and Pimentel, M.M. 2014. The Brasiliano collage in South America: a review. Brazilian Journal of Geology 44(3): 493-518. DOI: https://doi.org/10.5327/Z2317-4889201400030010
Bryce, S.M., Larcombe, P. and Ridd, P.V. 1998. The relative importance of landward-directed tidal sediment transport versus freshwater flood events in the Norman by River Estuary, Cape York Peninsula. Marine Geology 149: 55-78. DOI: https://doi.org/10.1016/S0025-3227(98)00013-9
Buatois, L. and Mángano, M.G. 2004. Terminal Proterozoic-Early Cambrian ecosystems: ichnology of the Puncoviscana Formation, northwestern Argentina. Fossils and Strata 51:1-16. DOI: https://doi.org/10.18261/9781405169851-2004-01
Buatois, L.A. and Mángano, M.G. 2012. An Early Cambrian shallow-marine ichnofauna from the Puncoviscana Formation of northwest Argentina: the interplay between sophisticated feeding behaviors, matgrounds and sea-level changes. Journal of Paleontology 86(1): 7-18. DOI: https://doi.org/10.1666/11-001.1
Cattaneo, A. and Steel, R.J. 2003. Transgressive deposits: a review of their variability. Earth-Science Reviews 62: 187–228. DOI: https://doi.org/10.1016/S0012-8252(02)00134-4
Cawood, P.A. 2005. Terra Australis Orogen: Rodinia breakup and development of the Pacific and Iapetus margins of Gondwana during the Neoproterozoic and Paleozoic. Earth Sciences Reviews 69: 249-279. DOI: https://doi.org/10.1016/j.earscirev.2004.09.001
Chakrabarti, A. 2005. Sedimentary structures of tidal flats: a journey from coast to inner estuarine region of Eastern India. Journal of Earth Systems Science 114(3): 353-368. DOI: https://doi.org/10.1007/BF02702954
Chiliguay, W.J., López de Azarevich, V.L., Zamponi, M. and Azarevich, M.B. 2014. Primer Cnidaria Hydrozoa en ambiente de plataforma en la Formación Puncoviscana (Neoproterozoico-Cámbrico inferior), Jujuy. XIV Reunión Argentina de Sedimentología, Actas CD: 81-82.
Chiliguay, W.J., Zamponi, M., López de Azarevich, V.L. and Azarevich, M.B. 2016. Las anémonas de mar (Cnidaria-Anthozoa-Actiniaria) en la Formación Puncoviscana- Jujuy- Argentina. XXII Congreso Geológico de Bolivia. Actas CD. 4 pp.
Chiliguay, W.J., López de Azarevich, V.L., Zamponi, M., Azarevich, M.B. and Muñoz, A. 2019. Paleoambientes de la Formación Puncoviscana (Neoproterozoico - Cámbrico inferior), en el sector oriental de la Quebrada de León, provincia de Jujuy. Serie de Correlación Geológica 35(1): 5-26.
Cooper, J.A.C. and Pilkey, O.H. 2004. Sea-level rise and shoreline retreat: time to abandon the Bruun Rule. Global and Planetary Change 43: 157–171. DOI: https://doi.org/10.1016/j.gloplacha.2004.07.001
Davis, R.A. and Dalrymple, R.W. 2012. Principles of Tidal Sedimentology. Springer, New York. 621 pp. DOI: https://doi.org/10.1007/978-94-007-0123-6
de Boer, P.L. 1979. Convolute lamination in modern sands of the estuary of the Oosterschelde, the Netherlands, formed as the result of entrapped air. Sedimentologv 26: 283-294. DOI: https://doi.org/10.1111/j.1365-3091.1979.tb00355.x
Derry L.A. 2010. A burial diagenesis origin for the Ediacaran Shuram-Wonoka carbon isotope anomaly. Earth and Planetary Science Letters 294:152-162. DOI: https://doi.org/10.1016/j.epsl.2010.03.022
Dott, R.H. and Bourgeois, J. 1982. Hummocky Stratification: Significance of its Variable Bedding Sequences. Geological Society of America Bulletin 93(8): 663-680. DOI: https://doi.org/10.1130/0016-7606(1982)93<663:HSSOIV>2.0.CO;2
Ehlers, T.A. and Chan, M.A. 1999. Tidal sedimentology and estuarine deposition of the Proterozoic Big Cottonwood Formation, Utah. Journal of Sedimentary Research 69 (6): 1169-1180. DOI: https://doi.org/10.2110/jsr.69.1169
Eriksson, P.G., Condie, K.C., Trisgaard, H., Mueller, W.U., Altermann, W., Miall, A.D., Aspler, L.B., Catuneanu, O. and Chiarenzelli, J.R. 1998. Precambrian clastic sedimentation systems. Sedimentary Geology 120 (1-4): 5-53. DOI: https://doi.org/10.1016/S0037-0738(98)00026-8
Escayola, M.P., van Staal, C.R. and Davis, W.J. 2011. The age and tectonic setting of the Puncoviscana Formation in northwestern Argentina: An accretionary complex related to Early Cambrian closure of the Puncoviscana Ocean and accretion of the Arequipa-Antofalla block. Journal of South American Earth Sciences 32: 438-459. DOI: https://doi.org/10.1016/j.jsames.2011.04.013
Fike, D.A., Grotzinger, J.P., Pratt, L.M. and Summons, R.E. 2006. Oxidation of the Ediacaran Ocean. Nature 444: 67-87. DOI: https://doi.org/10.1038/nature05345
Fölling P.G. and Frimmel H.E. 2002. Chemostratigraphic correlation of carbonate successions in the Gariep and Saldania Belts, Namibia and South Africa. Basin Research 14: 69-88. DOI: https://doi.org/10.1046/j.1365-2117.2002.00167.x
Font, E., Nédélec, A., Trindade, R.I.F., Macouin, M. and Charrière, A. 2006. Chemostratigraphy of the Neoproterozoic Mirassol d'Oeste cap dolostones (Mato Grosso, Brazil): An alternative model for Marinoan cap dolostone formation. Earth and Planetary Science Letters 250, 89-103. DOI: https://doi.org/10.1016/j.epsl.2006.06.047
Galindo, C., Casquet, C., Rapela, C., Pankhurst, R.J., Baldo, E. and Saavedra, J. 2004. Sr, C and O isotope geochemistry and stratigraphy of Precambrian and lower Paleozoic carbonate sequences from the Western Sierras Pampeanas of Argentina: tectonic implications. Precambrian Research 131: 55 –71. DOI: https://doi.org/10.1016/j.precamres.2003.12.007
Ginsberg, S.S., Aliotta, S. and Lizasoain, G.O. 2009. Sistema interconectado de canales de marea del estuario de Bahía Blanca, Argentina: evaluación de la circulación de sedimento como carga de fondo por métodos acústicos. Latin American Journal of Aquatic Research 37(2): 231-245. DOI: https://doi.org/10.3856/vol37-issue2-fulltext-10
Goldhammer, R.K., Dunn, P.A. and Hardie, L.A. 1990. Depositional cycles, composite sea-level changes, cycle stacking patterns, and the hierarchy of stratigraphic forcing: Examples from Alpine Triassic platform carbonates. GSA Bulletin 102(5): 535–562. DOI: https://doi.org/10.1130/0016-7606(1990)102<0535:DCCSLC>2.3.CO;2
Guacaneme, C., Babinski1, B., de Paula Santos, G. and Pedrosa Soares, A. 2017. C, O, and Sr isotopic variations in Neoproterozoic-Cambrian carbonate rocks from Sete Lagoas Formation (Bambuí Group), in the Southern São Francisco Basin, Brazil. Brazilian Journal of Geology 47(3): 521-543. DOI: https://doi.org/10.1590/2317-4889201720160126
Guidi, R., Mas, R. and Sarti, G. 2005. La sucesión sedimentaria silicilástica del Cretácico superior del borde sur de la Sierra de Guadarrama (Madrid, España central): análisis de facies y reconstrucción paleoambiental. Revista de la Sociedad Geológica de España 18(1-2): 99-111.
Halverson, G.P., Hurtgen, M.T., Porter, S.M. and Collins, A.S. 2009. Neoproterozoic-Cambrian Biogeochemical Evolution. In: Gaucher, C., Sial, A.N., Halverson, G.P., Frimmel, H.E. (Eds.): Neoproterozoic-Cambrian Tectonics, Global Change and Evolution: a focus on southwestern Gondwana. Developments in Precambrian Geology 16: 351-365. DOI: https://doi.org/10.1016/S0166-2635(09)01625-9
Harms, J.C., Southard, J.B., Spearing, D.R. and Walker, R.G. 1975. Depositional environments as interpreted from primary sedimentary structures and stratification sequences. Society of Economic, Paleontology and Mineralogy, Short Course 2. Dallas. DOI: https://doi.org/10.2110/scn.75.02
Harms, J.C., Southard, J.B. and Walker, R.G. 1982. Structure and sequences in clastic rocks. Lecture Notes: Society of Economic, Paleontology and Mineralogy, Short Course 9. Calgary. DOI: https://doi.org/10.2110/scn.82.09
Hauser, N. 2011. Petrología y geología isotópica de las rocas ígneas y estudios de proveniencia (U-Pb y Lu-Hf) de las rocas metasedimentarias del basamento del Paleozoico inferior en las áreas de Tastil, Niño Muerto, Río Blanco y Río Grande, Cordillera Oriental, noroeste argentino. Universidad Nacional de Salta, Doctoral Thesis (inedit) 330 p. Inédito.
Hausser, N., Matteini, M., Omarini, R.H. and Pimentel, M.M., 2011. Combined U-Pb and Lu-Hf isotope data on turbidites of the Paleozoic basement of NW Argentina and petrology of associated igneous rocks: implications for the tectonic evolution of western Gondwana between 560 and 460 Ma. Gondwana Research 19(1): 100-127. DOI: https://doi.org/10.1016/j.gr.2010.04.002
Hjulstrom, F. 1935. Studies of the morphological activity of rivers as illustrated by the River Fyris. Bulletin of the Geological Institute 25: 221–527. Upsala.
Hongn, F.D., Tubía, J.M., Aranguren, A. and Mon, R. 2001. El batolito de Tastil (Salta, Argentina): un caso de magmatismo poliorogénico en el basamento andino. Boletín Geológico y Minero 112(3): 113-124.
Houseman, G.A. 1990. The thermal structure of mantle plumes: axisymmetric or triple junction? Geophysical Journal International 102: 15-20. DOI: https://doi.org/10.1111/j.1365-246X.1990.tb00527.x
Huang, J., Chu, X., Jiang, G., Feng, L. and Chang, H. 2011. Hydrothermal origin of elevated iron, manganese and redox-sensitive trace elements in the c. 635 Ma Doushantuo cap carbonate. Journal of the Geological Society, London 168: 805–815. DOI: https://doi.org/10.1144/0016-76492010-132
Iturriza, R. 1981. Perfil geológico del Arroyo Los Noques, Sierra de Castillejo – Dpto Capital-Salta. Universidad Nacional de Salta, Professional Thesis (inedit). 77 pp.
Ježek, P. 1990. Análisis sedimentológico de la Formación Puncoviscana entre Tucumán y Salta. In: Aceñolaza, F.G., Miller H., Toselli A.J. (Eds): El Ciclo Pampeano en el noroeste argentino, Serie de Correlación Geológica 4: 9-36.
Jacobsen S.B. and Kaufman A.J. 1999. The Sr, C and O isotopic evolution of Neoproterozoic seawater. Chemical Geology 161:37-57. DOI: https://doi.org/10.1016/S0009-2541(99)00080-7
Johnson, H.D. and Baldwin, C.T. 1996. Shallow clastic seas. In: Sedimentary Environments: Processes, Facies and Stratigraphy, 3rd edn (Ed. Reading, H.G.), pp. 232–280. Blackwell Science, Oxford.
Keppie, J. and Bahlburgh, H. 1999. Puncoviscana Formation of northwestern and central Argentina: passive margin or foreland basin deposit. In: V.A. Ramos, J.D. Keppie (Eds.), Laurentia-Gondwana connections before Pangea. Geological Society of America Special Paper 336: 139-143. DOI: https://doi.org/10.1130/0-8137-2336-1.139
Kraemer, P.E., Escayola, M.P. and Martino, R.D. 1995. Hipótesis sobre la evolución tectónica neoproterozoica de las Sierras Pampeanas de Córdoba (30°40’-32°40’), Argentina. Revista de la Asociación Geológica Argentina 50: 47-59.
Kuchenbecker, M., Babinski, M., Pedrosa-Soares, A., Lopes-Silva, L. and Pimenta, F. 2016. Chemostratigraphy of the lower Bambuí Group, southwestern São Francisco Craton, Brazil: insights on Gondwana paleoenvironments. Brazilian Journal of Geology 46(1): 145-162. DOI: https://doi.org/10.1590/2317-488920160030285
Longhitano, S.G., Mellere, D., Steel, R.J. and Ainsworth, R.B. 2012. Tidal depositional systems in the rock record: A review and new insights. Sedimentary Geology 279: 2–22. DOI: https://doi.org/10.1016/j.sedgeo.2012.03.024
López, V., Argañaraz, R., López Ogalde, N. and Azarevich, M. 2006. El basamento calcáreo de la Sierra de Castillejo: caracterización petrografía y geoquímica. XI Congreso Geológico Chileno. Actas: 73-76. Antofagasta.
López de Azarevich, V.L. 2010. Advances in harmonic analysis of tidal rhythmites in the Puncoviscana Formation (Proterozoic - Early Cambrian), northwest Argentina. 18º International Sedimentological Congress, Abstract 606. Mendoza.
López de Azarevich, V.L. and Azarevich, M.B. 2015a. Exploring the evolving earth from tidal rhythmicity and lunar retreat. Tidalites 2015. 9° International Conference on Tidal Sedimentology. Actas: 54-57. Puerto Madryn, Argentina.
López de Azarevich, V.L. and Azarevich, M.B. 2015b. Neoproterozoic - Early Cambrian tidal deposits of Northwestern Argentina. Tidalites 2015. 9° International Conference on Tidal Sedimentology. Actas: 99-102. Puerto Madryn, Argentina.
López de Azarevich, V.L. and Azarevich, M.B. 2017. Lunar recession encoded in tidal rhythmites: a selective overview with examples from Argentina. Geomarine Letters 37: 333-344. DOI: https://doi.org/10.1007/s00367-017-0500-z
López de Azarevich, V.L., Omarini, R.H., Sureda, R.J. and Azarevich, M.B. 2010a. Ritmitas mareales en la Formación Puncoviscana (s.l.), en la localidad de Rancagua, noroeste argentino: dinámica mareal y consideraciones paleoastronómicas. Revista de la Asociación Geológica Argentina 66 (1): 104-118.
López de Azarevich, V.L., Omarini, R.H., Santos, R., Azarevich, M.B. and Sureda, R.J. 2010b. Nuevos aportes isotópicos para secuencias carbonáticas del Precámbrico superior (Formación Las Tienditas) del NO de Argentina: su implicancia en la evolución de la Cuenca Puncoviscana. In: Aceñolaza, F.G. (Ed.), Ediacarano-Cámbrico Inferior Gondwana I, Serie de Correlación Geológica 26: 27-48.
López de Azarevich, V.L., Aceñolaza, F.G., Azarevich, M.B. and Omarini, R.H. 2010c. Estructuras microbiales y algales de zona fótica en la Formación Puncoviscana, provincia de Salta, Argentina. In: Aceñolaza, F.G. (Ed.), Ediacarano-Cámbrico Inferior Gondwana I, Serie de Correlación Geológica 26: 75-84.
López de Azarevich, V.L., Azarevich, M.B. and Omarini, R.H. 2010d. Nuevas metodologías aplicadas al estudio de secuencias sedimentarias de plataforma en el basamento Ediacarano-Cámbrico inferior del NO argentino (Formación Puncoviscana). In: Aceñolaza, F.G. (Ed.), Ediacarano-Cámbrico Inferior Gondwana I, Serie de Correlación Geológica 26: 103-120.
López de Azarevich, V.L., Archer, A.W., Omarini, R.H. and Azarevich, M.B. 2010e. Sedimentary structures in the Puncoviscana Formation (Proterozoic - Early Cambrian), NW-Argentina: a comparison with modern shallow water analogs. 18º International Sedimentological Congress, Abstract 652. Mendoza.
López de Azarevich, V.L., Aceñolaza, F.G., Aceñolaza, G.F., Omarini, R.H. and Azarevich, M.B. 2012. La cuenca neoproterozoica-eocámbrica en el NOA: sedimentología y ambientes de depósito de secuencias con icnofósiles, nuevas perspectivas. In: Marquillas, R.A., Sánchez, M.C., Salfity J.A. (Eds.), Relatorio XIII Reunión Argentina de Sedimentología: pp 119-132. Salta. ISBN 978-987-26890-1-8.
Loewy, S.L., Connelly, J.N. and Dalziel, I.W.D., 2004. An orphaned basement block: The Arequipa-Antofalla Basement of the central Andean margin of South America. GSA Bulletin 116 (1,2): 171-187. DOI: https://doi.org/10.1130/B25226.1
Lyons, T.W. and Severmann, S. 2006. A critical look at iron paleoredox proxies: New insights from modern euxinic marine basins. Geochimica et Cosmochimica Acta 70: 5698–5722. DOI: https://doi.org/10.1016/j.gca.2006.08.021
Mazumder, R. and Arima, M. 2005. Tidal rhythmites and their implications. Earth-Science Reviews 69: 79-95. DOI: https://doi.org/10.1016/j.earscirev.2004.07.004
Melezhik, V., Gorokhov, I., Kuznetsov, A. and Fallick, A. 2001. Chemostratigraphy of Neoproterozoic carbonates: implications for ‘blind dating’. Terra Nova 13: 1-11. DOI: https://doi.org/10.1046/j.1365-3121.2001.00318.x
Middleton, G.V. and Southward, J.B. 1984. Mechanisms of sediment movement. Society of Economic, Paleontology and Mineralogy, Short Course 3. Tulsa. DOI: https://doi.org/10.2110/scn.84.03
Misi, A., Kaufman, A., Veizer, J., Powis, K., Azmy, K., Boggiani, Gaucher, C., Teixeira, J., Sanches, A. and Iyer, S. 2007. Chemostratigraphic correlation of Neoproterozoic successions in South America. Chemical Geology 237, 143 –167 DOI: https://doi.org/10.1016/j.chemgeo.2006.06.019
Mook, W.G. 2002. Isótopos ambientales en el ciclo hidrológico, principios y aplicaciones: Publicaciones del Instituto Geológico y Minero de España, Serie: Guías y manuales, 1, 595 p.
Mon, R. and Hongn, F.D. 1991. The structure of the Precambrian and Lower Paleozoic Basement of the Central Andes between 22° and 32°S Lat. Geologische Rundschau 80(3): 745-758. DOI: https://doi.org/10.1007/BF01803699
Mon, R. and Hongn, F.D. 1996. Estructura del basamento proterozoico y paleozoico inferior del norte argentino. Revista de la Asociación Geológica Argentina 51(1): 3-14.
Nichols, G. 2009. Sedimentology and Stratigraphy. Second Edition. Blackwell, John Wiley & Sons, Ltd., Publication, UK. 419 pp.
Nofke, N. 2010. Microbial Mats in Sandy Deposits from the Archean Era to Today. Springer, New York. 177 pp.
Omarini, R.H. 1983. Caracterización litológica, diferenciación y génesis de la Formación Puncoviscana entre el Valle de Lerma y la Faja Eruptiva de la Puna. Universidad Nacional de Salta, Doctoral Thesis (inédita), 202 p.
Omarini, R.H. and Baldis, B.A. 1984. Sedimentología y mecanismos deposicionales de la formación Puncoviscana (Grupo Lerma, Precámbrico-Cámbrico) del noroeste argentino. 9° Congreso Geológico Argentino, Acta 1: 384-398, S. C. Bariloche.
Omarini, R.H., Torres, G. and Moya, L. 1996. El stock Tipayoc: genesis magmática en un arco de islas del Cámbrico inferior en noroeste de Argentina. 13° Congreso Geológico Argentino, Actas 5: 545-561.
Omarini, R.H., Sureda, R.J., Götze, H., Seilacher, A. and Pflüger, F. 1999. Puncoviscana folded belt in northwestern Argentina: testimony of Late Proterozoic Rodinia fragmentation and pre-Gondwana collisional episodes. International Journal of Earth Science 88: 76-97. DOI: https://doi.org/10.1007/s005310050247
Omarini, R.H., Sureda, R.J., López de Azarevich, V.L. and Hauser, N. 2008. El basamento Neoproterozoico-Cámbrico inferior en la provincia de Jujuy. In: Coira, B., Zappettini, E. (Eds.), Geología y Recursos Naturales de la provincia de Jujuy. Relatorio XVII Congreso Geológico Argentino, Chapter IIa: Ciclo Pampeano y Famatiniano: 17-28.
Ortíz, A. 1962. Estudio geológico de las Sierras de Castillejo y Sancha. Universidad Nacional de Tucumán, Doctoral Thesis (inedit).
Pettijohn, F.J. 1975. Sedimentary rocks. Harper and Row, New York. 628 pp.
Pettijohn, F.J. and Potter, P.E. 1964. Atlas and glossary of primary sedimentary structures. Springer-Verlag, New York, USA. 370 pp. DOI: https://doi.org/10.1007/978-3-642-94899-2
Piñán-Llamas, A. and Escamilla-Casas, J.C. 2013. Provenance and tectonic setting of Neoproterozoic to Early Cambrian metasedimentary rocks from the Cordillera Oriental and Eastern Sierras Pampeanas, NW Argentina. Boletín Sociedad Geológica Mexicana 65(2): 373-395. DOI: https://doi.org/10.18268/BSGM2013v65n2a18
Porto, J.C., Fernández, R. and Crrión, M.H. 1990. Dolomías de la Formación Puncoviscana s.l. In: Aceñolaza, F.G., Miller, H., Toselli, A.J. (Eds.), El Ciclo Pampeano en el Noroeste Argentino. Serie de Correlación Geológica 4: 37-52.
Press, F. and Siever, R. 1986. Earth (2nd edition). W.H. Freeman, New York, 649 pp.
Ramos, V.A. 2008. The basement of the central Andes: the Arequipa and related terranes. Annual Review of Earth and Planetary Sciences, 36: 289-324. DOI: https://doi.org/10.1146/annurev.earth.36.031207.124304
Rapela, C.W., Verdecchia, S.O., Casquet, C., Pankhurst, R.J., Baldo, E.G., Galindo, C., Murra, J.A., Dahlquist, J.A. and Fanning, C.M. 2016. Identifying Laurentian and SW Gondwana sources in the Neoproterozoic to Early Paleozoic metasedimentary rocks of the Sierras Pampeanas: Paleogeographic and tectonic implications. Gondwana Research 32: 193–212. DOI: https://doi.org/10.1016/j.gr.2015.02.010
Ross, R.J. 1991. Tectonic setting in the Windermere Supergroup: The continental perspective. Geology 19: 1125–1128. DOI: https://doi.org/10.1130/0091-7613(1991)019<1125:TSOTWS>2.3.CO;2
Robinson, R.A.J., Brezina, C.A., Parrish, R.R., Horstwood, M.S.A., Oo, A.W., Bird, M.I., Thein, M., Walters, A.S., Oliver, G.J.H. and Zaw, K. 2014. Large rivers and orogens: The evolution of the Yarlung Tsangpo– Irrawaddy system and the eastern Himalayan syntaxis. Gondwana Research 26: 112–121. DOI: https://doi.org/10.1016/j.gr.2013.07.002
Salfity, J.A., Omarini, R., Baldis, B. and Gutierrez, W. 1976. Consideraciones sobre la evolución geológica del Precámbrico y Paleozoico del norte argentino. 2º Congreso Iberoamericano de Geología Económica, Actas 4: 341-361. Buenos Aires.
Sankaran, A.V. 2000. Globalicecover–ANeoproterozoicpuzzle. Global ice cover – A Neoproterozoic puzzle. Current Science 79(3): 274-277.
Santos R.V., Alvarenga C.J.S., Babinski M., Ramos M.L.S, Cukrov N., Fonseca M.A., Sial A.N., Dardenne M.A. and Noce C.M., 2004. Carbon isotopes of Mesoproterozoic–Neoproterozoic sequences from Southern São Francisco craton and Araçuaí Belt, Brazil: Paleogeographic implications. Journal of South American Earth Sciences 18: 27-39. DOI: https://doi.org/10.1016/j.jsames.2004.08.009
Scholle, P.A. and Arthur, M.A. 1980. Carbon isotope fluctuations in Cretaceous pelagic limestones potential stratigraphic and petroleum exploration tool. American Association of Petroleum Geogoly Bulletin 64: 67-87. DOI: https://doi.org/10.1306/2F91892D-16CE-11D7-8645000102C1865D
Selley, R.C. 1968. A classification of paleocurrent models. Journal of Geology 76(1): 99-110. DOI: https://doi.org/10.1086/627311
Sial, A., Ferreira, V., Dealmeida, A., Romano, A., Parente, C., Dacosta, M. and Santos, V. 2000. Carbon isotope fluctuations in Precambrian carbonate sequences of several localities in Brazil. Anais. Academia Brasilian Cience 72(4): 539-558. DOI: https://doi.org/10.1590/S0001-37652000000400006
Sial, A.N., Ferreira, V.P., Toselli, A.J., Aceñolaza, F.G., Pimentel, M.M., Parada, M.A. and Alonso, R.N. 2001. C and Sr isotopic evolution of carbonate sequences in NW Argentina: implications for a probable Precambrian-Cambrian transition. Carbonates and Evaporites 16(2): 141-152. DOI: https://doi.org/10.1007/BF03175832
Silva, L.C., McNaughton, N.J., Armstrong, R., Hartmann, L.A. and Fletcher, I.R. 2005. The Neoproterozoic Mantiqueira Province and its African connections: a zircon-based geochronological subdivision for the Brasiliano/Pan-African system of orogens. Precambrian Research 136: 203-240. DOI: https://doi.org/10.1016/j.precamres.2004.10.004
Storey, B., Alabaster, T., Macdonald, D., Pankhurst, R. and Dalziel, I. 1992. Upper Proterozoic rift-related rocks in the Pensacola Mountains, Antarctica: precursors to supercontinent breakup? Tectonics 11: 1392–1405. DOI: https://doi.org/10.1029/92TC00599
Sureda, R.J. and Omarini, R.H. 1999. Evolución geológica y nomenclatura pre-Gondwánica en el Noroeste de Argentina (1800-160 Ma). Acta Geológica Hispánica 34(2-3): 197-225.
Tapia Viedma, S. and Gorustovich, S. 1998. Estudio Geológico y cubicación de las calizas negras (Formación Las Tienditas) de El Coro, Salta. VII Congreso Argentino de Geología Económica, Actas 2: 111-116.
Toselli, A.J., Aceñolaza, F.G., Sial, A.N., Rossi, J.N., Ferreira V.P. and Alonso, R.N. 2005. Rocas carbonáticas de la Formación Puncoviscana en las Provincias de Salta y Jujuy, norte de Argentina. 16° Congreso Geológico Argentino, Actas, 4: 647–652, La Plata
Turner, J.C.M. 1960. Estratigrafía de la Sierra de Santa Victoria y adyacentes. Boletín de la Academia Nacional de Ciencias 41 (2): 163-196, Córdoba.
Van Staden, A. and Zimmermann, U. 2003. Tillites or ordinary conglomerates? Provenance studies on diamictites of the Neoproterozoic Puncoviscana in NW Argentina. 10° Congreso Geológico Chileno, Abstract Volume. CD. Concepción.
Vieira L.C., Trindade R.I.F, Nogueira A.C.R. and Ader M. 2007. Identifiation of a Sturtian cap carbonate in the Neoproterozoic Sete Lagoas carbonate plataform, Bambuí Group, Brazil. Comptes Rendus Geoscience 339: 240-258. DOI: https://doi.org/10.1016/j.crte.2007.02.003
Vos, R.G. and Erikson, K.A. 1977. An embayment model for tidal and wave swash deposits occurring within a fluvially dominated middle Proterozoic sequence in South Africa. Sedimentary Geology 18: 161-173. DOI: https://doi.org/10.1016/0037-0738(77)90010-0
Walker, R.G. and Plint, A.G. 1992. Wave- and storm-dominated shallow marine systems. In: Walker R.G., James N.P. (Eds.), Facies models: Response to sea level change, pp. 219-238. Geological Association of Canada, St John’s Newfoundland.
Weij, R., Reijmer, J.J., Eberli, G.P. and Swart, P.K. 2018. The limited link between accommodation space, sediment thickness, and inner platform facies distribution (Holocene-Pleistocene, Bahamas). The Depositional Record 2018: 1-21. doi: 10.1002/dep2.50. DOI: https://doi.org/10.1002/dep2.50
Williams, G.E. 1991. Upper Proterozoic tidal rhythmites, South Australia: sedimentary features, deposition, and implications for the Earth's palaeorotation. In: Smith, A. Reinson, G.E. Zaitlin B.A., Rahmani, R.A. (Eds.). Clastic Tidal Sedimentology. Canadian Society Petroleum Geologists Memories 16: 161–177.
Williams, G.E. 2000. Geological constraints on the Precambrian history of Earth’s rotation and the Moon’s orbit. Reviews of Geophysics 38: 37–59. DOI: https://doi.org/10.1029/1999RG900016
Young, G.M. 2013. Precambrian supercontinents, glaciations, atmospheric oxygenation, metazoan evolution and an impact that may have changed the second half of Earth history. Geoscience Frontiers 4: 247-261. DOI: https://doi.org/10.1016/j.gsf.2012.07.003
Zimmermann, U. 2005. Provenance studies of very low- to low-grade metasedimentary rocks of the Puncoviscana complex, northwest Argentina. In: Vaughan, A.P.M., Leat P.T., Pankhurst R.J (Eds.), Terrane Processes at the Margins of Gondwana. Geological Society of London, Special Publication 246: 381–416. DOI: https://doi.org/10.1144/GSL.SP.2005.246.01.16
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2021 Acta Geológica Lilloana

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.