Effect of fire on ectomycorrhizal communities associated with Nothofagus antarctica (Nothofagaceae) under field and nursery conditions

Authors

  • Matías Soto-Mancilla Grupo de Microbiología Aplicada y Biotecnología Vegetal y del Suelo (MABves), Instituto Andino Patagónico de Tecnologías Biológicas y Geoambientales (IPATEC), Universidad Nacional del Comahue (UNCo), Quintral 1250, CP8400, Bariloche, Río Negro, Argentina https://orcid.org/0009-0009-4102-2058
  • Astrid Luciana Ebrecht Grupo de Microbiología Aplicada y Biotecnología Vegetal y del Suelo (MABves), Instituto Andino Patagónico de Tecnologías Biológicas y Geoambientales (IPATEC), Universidad Nacional del Comahue (UNCo). CONICET. Bariloche, Río Negro, Argentina. https://orcid.org/0009-0007-8054-7266
  • Jorgelina Franzese Grupo de Investigaciones de Ecología en Ambientes Antropizados, Instituto de Investigaciones en Biodiversidad y Medioambiente (INIBIOMA), Universidad Nacional del Comahue (UNCo). CONICET. Bariloche, Río Negro, Argentina. https://orcid.org/0000-0003-3539-7434
  • Verónica El Mujtar Instituto de Investigaciones Forestales y Agropecuarias Bariloche (IFAB), Instituto Nacional de Tecnologías Agropecuarias (INTA). CONICET. Bariloche, Río Negro, Argentina. https://orcid.org/0000-0003-0401-2423
  • Natalia Fernández Grupo de Microbiología Aplicada y Biotecnología Vegetal y del Suelo (MABves), Instituto Andino Patagónico de Tecnologías Biológicas y Geoambientales (IPATEC), Universidad Nacional del Comahue (UNCo). CONICET. Bariloche, Río Negro, Argentina. https://orcid.org/0000-0001-6483-0407

DOI:

https://doi.org/10.30550/j.lil/2138

Keywords:

Experimental burn, native shrubland, ñire, symbiotic fungi, wildfires

Abstract

Ectomycorrhizal fungi (EcMF) are essential for plants and ecosystems, especially after major disturbances such as wildfires. Fire is a natural disturbance associated with the dynamics of Andean-Patagonian forests and shrublands; however, its frequency and intensity are currently increasing. Studies on EcMF communities are typically conducted under either field or nursery conditions, even though a combination of both approaches is uncommon. In this study, we compared the effects of fire on colonization, abundance, taxonomic and functional diversity of the EcMF communities associated with Nothofagus antarctica (ñire) using two complementary approaches: 1) after a wildfire under natural field conditions and 2) after experimental burns in a nursery experiment. While colonization rates were negatively affected by fire only under field conditions, this disturbance also negatively impacted the richness, taxonomic diversity, and composition of EcMF communities in both field and nursery plants. Functional diversity (exploration types) was also affected by the fire, leading to a reduction in the occurrence and abundance of ectomorphotypes with greater structural complexity. Understanding the dynamics of soil EcMF communities dynamics is relevant because they can help ecosystem recovery after wildfires, which are expected to become more severe and frequent in the region.

Downloads

Download data is not yet available.

References

Adkins, J., Docherty, K. M., Gutknecht, J. L. y Miesel, J. R. (2020). How do soil microbial communities respond to fire in the intermediate term? Investigating direct and indirect effects associated with fire occurrence and burn severity. Science of the Total Environment 745: 140957.

Agerer, R. (1987-2006). Colour atlas of ectomycorrhizae. Einhorn-Verlag, Munich, Alemania.

Agerer, R. (2001). Exploration types of ectomycorrhizae: a proposal to classify ectomycorrhizal mycelial systems according to their patterns of differentiation and putative ecological importance. Mycorrhiza 11: 107-114.

Alauzis, M. V., Mazzarino, M. J., Raffaele, E. y Roselli, L. (2004). Wildfires in NW Patagonia: long-term effects on a Nothofagus forest soil. Forest Ecology and Management 192 (2-3): 131-142.

Azpilicueta, M. M., Gallo, L. A., Martínez, A. y Varela, S. (2010). Manual de viverización, cultivo y plantación de Roble Pellín en el norte de la región Andino Patagónica.

Bahamonde, H. A., Peri, P. L., Monelos, L. H. y Martínez Pastur, G. (2011). Aspectos ecológicos de la regeneración por semillas en bosques nativos de Nothofagus antarctica en Patagonia Sur, Argentina. Bosque (Valdivia) 32 (1): 20-29.

Barreiro, A. y Díaz-Raviña, M. (2021). Fire impacts on soil microorganisms: Mass, activity, and diversity. Current Opinion in Environmental Science & Health 22: 100264.

Bartón, K. (2020). DHARMa: Residual Diagnostics for Hierarchical (Multi-Level / Mixed) Regression Models. R package ver. 0.4.6. https://CRAN.R-project.org/package=DHARMa (consultado en noviembre, 2024).

Brundrett, M. C. y Tedersoo, L. (2018). Evolutionary history of mycorrhizal symbioses and global host plant diversity. New Phytologist 220 (4): 1108-1115.

Buscardo, E., Rodríguez-Echeverría, S., Martín, M. P., De Angelis, P., Pereira, J. S. y Freitas, H. (2010). Impact of wildfire return interval on the ectomycorrhizal resistant propagules communities of a Mediterranean open forest. Fungal Biology 114 (8): 628-636.

Cairney, J. W. y Bastias, B. A. (2007). Influences of fire on forest soil fungal communities. Canadian Journal of Forest Research 37 (2): 207-215.

Carron, A. (2021). Impacto del manejo forestal del matorral nativo en el NO patagónico sobre las comunidades microbianas del suelo y los simbiontes radicales. (Tesis de Doctorado, Universidad Nacional del Comahue. Centro Regional Universitario Bariloche).

Castaño, C., Hernández-Rodríguez, M., Geml, J., Eberhart, J., Olaizola, J., Oria-de-Rueda, J. A. y Martín-Pinto, P. (2020). Resistance of the soil fungal communities to medium-intensity fire prevention treatments in a Mediterranean scrubland. Forest Ecology and Management 472: 118217.

Castillo, M., Pedernera P. y Peña E. (2003). Incendios forestales y medio ambiente: una síntesis global. Revista Ambiente y Desarrollo de CIPMA 19 (3-4): 44-53.

Certini, G. (2005). Effects of fire on properties of forest soils: a review. Oecologia 143 (1): 1-10.

Chávez, D., Machuca, Á., Fuentes-Ramirez, A., Fernández, N. y Cornejo, P. (2020). Shifts in soil traits and arbuscular mycorrhizal symbiosis represent the conservation status of Araucaria araucana forests and the effects after fire events. Forest Ecology and Management 458: 117806.

Clemmensen, K. E., Finlay, R. D., Dahlberg, A., Stenlid, J., Wardle, D. A. y Lindahl, B. D. (2014). Carbon sequestration is related to mycorrhizal fungal community shifts during long?term succession in boreal forests. New Phytologist 205 (4): 1525-1536.

Cóbar-Carranza, A. J., García, R. A., Pauchard, A. y Pena, E. (2014). Effect of Pinus contorta invasion on forest fuel properties and its potential implications on the fire regime of Araucaria araucana and Nothofagus antarctica forests. Biological Invasions 16: 2273-2291.

Cowan A. D., Smith, J. E. y Fitzgerald, S. A. (2016). Recovering lost ground: effects of soil burn intensity on nutrients and ectomycorrhiza communities of ponderosa pine seedlings. Forest Ecology and Management 378: 160-172.

Day, N. J., Dunfield, K. E., Johnstone, J. F., Mack, M. C., Turetsky, M. R., Walker, X. J., ... y Baltzer, J. L. (2019). Wildfire severity reduces richness and alters composition of soil fungal communities in boreal forests of western Canada. Global change biology 25 (7): 2310-2324.

Defrenne, C. E., Philpott, T. J., Guichon, S. H., Roach, W. J., Pickles, B. J. y Simard, S. W. (2019). Shifts in ectomycorrhizal fungal communities and exploration types relate to the environment and fine-root traits across interior Douglas-fir forests of western Canada. Frontiers in Plant Science 10: 643.

Diehl, P., Mazzarino, M. J. y Fontenla, S. (2008). Plant limiting nutrients in Andean–Patagonian woody species: effects of interannual rainfall variation, soil fertility and mycorrhizal infection. Forest Ecology and Management 255: 2973-2980.

Donoso, C., Steinke, L. y Premoli, A. (2006). Nothofagus antarctica (G. Forster) Oerst. In: Donoso Zegers C ed. Las especies arbóreas de los bosques templados de Chile y Argentina. Autoecología. Valdivia, pp 401-410.

Dove, N. C. y Hart, S. C. (2017). Fire reduces fungal species richness and in situ mycorrhizal colonization: a meta-analysis. Fire Ecology 13: 37-65.

Ebrecht, A. L. (2023). Efecto de los incendios sobre las comunidades fúngicas a distintas profundidades del suelo en dos ecosistemas forestales nativos (Tesis de Licenciatura, Universidad Nacional del Comahue. Centro Regional Universitario Bariloche).

Enright, D. J., Frangioso, K. M., Isobe, K., Rizzo, D. M. y Glassman, S. I. (2022). Mega?fire in redwood tanoak forest reduces bacterial and fungal richness and selects for pyrophilous taxa that are phylogenetically conserved. Molecular Ecology 31 (8): 2475-2493.

Fernández, N. V., Marchelli, P. y Fontenla, S. B. (2013). Ectomycorrhizas naturally established in Nothofagus nervosa seedlings under different cultivation practices in a forest nursery. Microbial ecology 66: 581-592.

Fernández, N. V., Marchelli, P., Gherghel, F., Kost, G. y Fontenla, S. B. (2015). Ectomycorrhizal fungal communities in Nothofagus nervosa (Raulí): a comparison between domesticated and naturally established specimens in a native forest of Patagonia, Argentina. Fungal ecology 18: 36-47.

Fernández, C. W., Nguyen, N. H., Stefanski, A., Han, Y., Hobbie, S. E., Montgomery, R. A., ... y Kennedy, P. G. (2017). Ectomycorrhizal fungal response to warming is linked to poor host performance at the boreal?temperate ecotone. Global Change Biology 23 (4): 1598-1609.

Fernández, N., Fontenla, S., Fioroni, F., Soto-Mancilla, M., Carron, A., Moguilevsky, D., ... y Mestre, M. C. (2022). Mycorrhizas in Nothofagus From South America: What Do We Know From Nursery and Field Experiences?. In Mycorrhizal Fungi in South America: Biodiversity, Conservation, and Sustainable Food Production (pp. 281-304). Cham: Springer International Publishing.

Floriani, F. D., El Mujtar, V., Mateo, C., Sola, G., Peñalba, M. G., Sbrancia, R., ... y Fernández, N. V. (2024). Site conditions shaped the effect of silvicultural management on the biodiversity of ectomycorrhizal fungi in mixed Nothofagus forests. Forest Ecology and Management 563: 121981.

Gardes, M. y Bruns, T. D. (1993). ITS primers with enhanced specificity for Basidiomycetes — application to the identification of mycorrhizae and rusts. Molecular Ecology 2 (2): 113-118.

Glassman, S. I., Levine, C. R., DiRocco, A. M., Battles, J. J. y Bruns, T. D. (2016). Ectomycorrhizal fungal spore bank recovery after a severe forest fire: some like it hot. The ISME journal 10 (5): 1228-1239.

Grand, L. F. y Harvey, A. E. (1982). Quantitative measurement of ectomycorrhizae on plant roots. En: Methods and Principles of Mycorrhizal Research. Shenck NC (Ed.). American Phytopathological Society, Saint Paul: 157-164.

Hanan, E. J., Kennedy, M. C., Ren, J., Johnson, M. C. y Smith, A. M. (2022). Missing climate feedbacks in fire models: limitations and uncertainties in fuel loadings and the role of decomposition in fine fuel accumulation. Journal of Advances in Modeling Earth Systems 14 (3): e2021MS002818.

Heine, J. H. 2023. pairwiseAdonis: Pairwise Comparison Using Adonis. R package ver. 0.4.0. https://cran.r-project.org/web/packages/pairwise/index.html (consultado en noviembre, 2024).

Hernández-Rodríguez, M., Oria-de-Rueda, J. A. y Martín-Pinto, P. (2013). Post-fire fungal succession in a Mediterranean ecosystem dominated by Cistus ladanifer L. Forest Ecology and Management 289: 48-57.

Kitzberger, T. y Veblen, T. T. (2003). Influences of climate on fire in northern Patagonia, Argentina. Fire and climatic change in temperate ecosystems of the western Americas: 296-321.

Kitzberger, T., Tiribelli, F., Barberá, I., Gowda, J. H., Morales, J. M., Zalazar, L. y Paritsis, J. (2022). Projections of fire probability and ecosystem vulnerability under 21st century climate across a trans-Andean productivity gradient in Patagonia. Science of the Total Environment 839: 156303.

Kraisitudomsook, N., Healy, R. A., Mujic, A. B., Pfister, D. H., Nouhra, E. R. y Smith, M. E. (2019). Systematic study of truffles in the genus Ruhlandiella, with the description of two new species from Patagonia. Mycologia 111 (3): 477-492.

LeDuc, S. D., Lilleskov, E. A., Horton, T. R. y Rothstein, D. E. (2013). Ectomycorrhizal fungal succession coincides with shifts in organic nitrogen availability and canopy closure in post-wildfire jack pine forests. Oecologia 172: 257-269.

Lenth, R. V. (2023). emmeans: Estimated Marginal Means, aka Least-Squares Means. R package version 1.8.8. https://CRAN.R-project.org/package=emmeans (consultado en noviembre, 2024).

Longo, M. S., Urcelay, C. y Nouhra, E. (2011). Long term effects of fire on ectomycorrhizas and soil properties in Nothofagus pumilio forests in Argentina. Forest Ecology and Management 262: 348-354.

Mazzarino, M. J. y Gobbi, M. E. (2005). Indicadores de circulación de nutrientes en bosques Andino-Patagónicos. IDIA 21 (5):15-18.

Moeller, H. V. y Peay, K. G. (2016). Competition-function tradeoffs in ectomycorrhizal fungi. PeerJ 4: e2270.

Moguilevsky, D. (2024). Micorrizas y comunidades vegetales en bosques de Nothofagus pumilio afectados por la erupción del complejo volcánico Puyehue-Cordón Caulle. (Tesis de Doctorado, Universidad Nacional del Comahue. Centro Regional Universitario Bariloche).

Mohr Bell, D. (2021). Informe de superficie afectada por el Incendio de Paraje Los Repollos - Cuesta del Ternero, El Bolsón, provincia de Río Negro. CIFAB (9).

Neary, D. G., Klopatek, C. C., DeBano, L. F. y Ffolliott, P. F. (1999). Fire effects on belowground sustainability: a review and synthesis. Forest Ecology and Management 122 (1-2): 51-71.

Nouhra, E., Urcelay, C., Longo, S. y Tedersoo, L. (2013). Ectomycorrhizal fungal communities associated to Nothofagus species in Northern Patagonia. Mycorrhiza 23 (6): 487-496.

Olchowik, J., Hilszcza?ska, D., Studnicki, M., Malewski, T., Kariman, K. y Borowski, Z. (2021). Post-fire dynamics of ectomycorrhizal fungal communities in a Scots pine (Pinus sylvestris L.) forest of Poland. PeerJ 9: e12076.

Oksanen, J., F. Guillaume, D. Lyon, R. B. M. Simpson, P. Soetaert , H. y Wagner. (2023). vegan: Community Ecology Package. R package version 2.6-4. https://CRAN.R-project.org/package=vegan (consultado en noviembre, 2024).

Peay, K. G., Kennedy, P. G. y Bruns, T. D. (2011). Rethinking ectomycorrhizal succession: are root density and hyphal exploration types drivers of spatial and temporal zonation?. Fungal Ecology 4 (3): 233-240.

Premoli, A. C. (1991). Morfología y capacidad germinativa en poblaciones de Nothofagus antarctica (Foster) Oerst. del noroeste andino patagónico. Bosque 12 (2): 53-59.

Prieto-Fernández, A., Acea, M. J. y Carballas, T. (1998). Soil microbial and extractable C and N after wildfire. Biology and Fertility of Soils 27: 132-142.

Pulido-Chavez, M. F., Alvarado, E. C., DeLuca, T. H., Edmonds, R. L. y Glassman, S. I. (2021). High-severity wildfire reduces richness and alters composition of ectomycorrhizal fungi in low-severity adapted ponderosa pine forests. Forest Ecology and Management 485: 118923.

R Core Team. (2023). R: A language and environment for statistical computing. Version 4.3.2. R Foundation for Statistical Computing. Vienna, Austria. https://www.R-project.org/ (consultado en noviembre, 2024).

Rudawska, M., Leski, T., Trocha, L. K. y Gornowicz, R. (2006). Ectomycorrhizal status of Norway spruce seedlings from bare-root forest nurseries. Forest Ecology and Management 236 (2-3): 375-384.

Salinas, S., Acuña Aroca, B., Koch, Z. y Uribe, M. (2014). Propagación sexual y asexual de Ñire Nothofagus antarctica (Forster) Oerst en la Patagonia Chilena.

Schinelli Casares, T. (2012). Producción de Nothofagus bajo condiciones controladas. 1a Ed. Esquel: Ediciones INTA.

Simard, S. W., Beiler, K. J., Bingham, M. A., Deslippe, J. R., Philip, L. J. y Teste, F. P. (2012). Mycorrhizal networks: mechanisms, ecology and modelling. Fungal Biology Reviews 26 (1): 39-60.

Smith, M. E., Henkel, T. W. y Rollins, J. A. (2015). How many fungi make sclerotia?. Fungal Ecology 13: 211-220.

Smith, S. E. y Read, D. J. (2008). Mycorrhizal symbiosis (3rd edition). Academic press.

Soto Mancilla, M. A. (2022). Impacto de la intensidad del fuego sobre el comportamiento micorrícico y crecimiento temprano de una especie forestal nativa (Nothofagus antarctica) y otra exótica invasora (Pinus contorta) (Tesis de Licenciatura, Universidad Nacional del Comahue. Centro Regional Universitario Bariloche).

Stendell, E. R., Horton, T. R. y Bruns, T. D. (1999). Early effects of prescribed fire on the structure of the ectomycorrhizal fungus community in a Sierra Nevada ponderosa pine forest. Mycological Research 103 (10): 1353-1359.

Taylor, D. L., Hollingsworth, T. N., McFarland, J. W., Lennon, N. J., Nusbaum, C. y Ruess, R. W. (2014). A first comprehensive census of fungi in soil reveals both hyperdiversity and fine?scale niche partitioning. Ecological monographs 84 (1): 3-20.

Tedersoo, L., Bahram, M. y Zobel, M. (2020). How mycorrhizal associations drive plant population and community biology. Science 367 (6480): eaba1223.

Truong, C., Gabbarini, L. A., Moretto, A., Escobar, J. M. y Smith, M. E. (2024). Ectomycorrhizal fungi and the nitrogen economy of Nothofagus in southern Patagonia. Ecology and Evolution 14 (10): e70299.

Urretavizcaya, M. F., Defossé, G. E. y Gonda, H. E. (2005). Cambios ambientales y restauración ecológica post incendio en bosques de Austrocedrus chilensis. (Tesis de Doctorado, Universidad Nacional del Comahue. Centro Regional Universitario Bariloche).

Van der Linde, S., Suz, L. M., Orme, C. D. L., Cox, F., Andreae, H., Asi, E., … y Bidartondo, M. I. (2018). Environment and host as large-scale controls of ectomycorrhizal fungi. Nature 558 (7709): 243-248.

Vásquez-Gassibe, P., Oria-de-Rueda, J. A., Santos-del-Blanco, L. y Martín-Pinto, P. (2016). The effects of fire severity on ectomycorrhizal colonization and morphometric features in Pinus pinaster Ait. seedlings. Forest Systems 25 (1): e050-e050.

Varela , S. A. y Arana, V. (2011). Latencia y germinación de semillas. Tratamientos pregerminativos. Serie técnica: “Sistemas Forestales Integrados”. Área Forestal – INTA EEA Bariloche.

Veblen, T. T., Donoso, C., Kitzberger, T. y Rebertus, A. J. (1996). Ecology of southern Chilean and Argentinean Nothofagus forests. En: T.T Veblen (Ed.), The ecology and biogeography of Nothofagus forests (pp. 93-353). Yale University Press.

White, T.J ., Bruns, T., Lee, S. y Taylor, J. W. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR protocols: a guide to methods and applications. Edited by M.A. Innis, D.H. Gelfand, J.J. Sninsky, and T.J. White. Academic Press, New York. pp. 315-322.

Yang, T., Tedersoo, L., Lin, X., Fitzpatrick, M. C., Jia, Y., Liu, X., ... y Chu, H. (2020). Distinct fungal successional trajectories following wildfire between soil horizons in a cold?temperate forest. New Phytologist 227 (2): 572-587.

Efecto del fuego sobre las comunidades de ectomicorrizas asociadas a Nothofagus antarctica (Nothofagaceae) en condiciones de campo y vivero

Published

2025-07-03

How to Cite

Soto-Mancilla, M., Ebrecht, A. L., Franzese, J., El Mujtar, V., & Fernández, N. (2025). Effect of fire on ectomycorrhizal communities associated with Nothofagus antarctica (Nothofagaceae) under field and nursery conditions. Lilloa, 61(s2), 131–156. https://doi.org/10.30550/j.lil/2138