El ambiente tectónico del intrusivo Limón, Morona Santiago, Ecuador

Autores/as

DOI:

https://doi.org/10.30550/j.agl/2023.34.2/1819

Palabras clave:

Petrografía, Geoquímica, Magmatismo Jurásico, Limón, Zona Subandina

Resumen

Al sur de la zona Subandina, el complejo intrusivo Zamora incluye un amplio espectro de granitoides, de afinidad calco-alcalina, que fueron interpretados como las raíces magmáticas de un arco volcánico de larga vida del Jurásico. Sin embargo, incontables cuerpos intrusivos fueron cartografiados en el complejo intrusivo Zamora, sin considerar las relaciones de corte entre rocas intrusivas y roca caja, la naturaleza y posición estratigráfica de la roca caja, el detalle petrográfico y geoquímico de rocas intrusivas. La ausencia de esta información impide la adecuada comprensión del magmatismo Jurásico y otros episodios magmáticos en esta región. Esta investigación discute el ambiente tectónico de un cuerpo intrusivo que aflora en las inmediaciones del poblado General Leónidas Plaza (Limón) denominado intrusivo Limón, en función del análisis litoestratigráfico regional, relaciones de corte, caracterización petrográfica y geoquímica. El intrusivo Limón aflora en la vía Limón a Chiviaza, consiste en un cuerpo central tipo domo y un conjunto de cuerpos periféricos tipo cupulas, de orientación N-S y aproximadamente 3 Km de longitud, compuesto por un espectro litológico que incluye a granodioritas y cuarzomonzonita; relaciones entre sílice y álcali indican que posee afinidad alcalina-cálcica a alcalina, de carácter magnesiano y perluminoso; concentraciones de Th y Co indican series calco-alcalinas de alto K. Las relaciones entre Th, Yb, Nb, Rb, Y, Yb, Hf y Ta indican que el intrusivo Limón proviene de un arco continental que se desarrolló en un dominio tectónico orogénico con corteza engrosada y evoluciono a un episodio post magmático intra–continental.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Christian Wladimir Romero Cóndor, Intituto de Investigación Geológica y Energetica del Ecuador (IIGE)

Christian Wladimir Romero Cóndor. - Nació en Quito, Ecuador en 1992. Recibió su título de Ingeniero en Geología de la Escuela Politécnica Nacional; ha participado como expositor en las VII Jornadas de Ciencias de la Tierra, EPN en 2017; como expositor en la American Association of Petroleum Geologists, AAPG en 2018 y 2019; en el 8th-ISAG en el 2019, en la Geological Society of America, GSA en 2020. Tiene dos diplomados: Geología del Cuaternario; Estratigrafía y Sedimentología Desde el 2019 es becario del Organismo Internacional de Energía Atómica. Su campo de investigación está relacionado a la Sedimentología y Estratigrafía aplicada a la geología regional y reconstrucciones paleo ambientales. Actualmente trabaja en el Proyecto de Investigación Geológica y Disponibilidad de Ocurrencias Minerales en el Territorio Ecuatoriano desarrollado por el Instituto de Investigación Geológica y Energética

Citas

Baby, P., Rivadeneira, M., Barragán R., y Christophoul, F. (2013) Thick-skinned tectonics in the Oriente foreland basin of Ecuador. Geological Society, London, Special Publications, 377(1), 59-76. Disponible en https://doi.org/10.1144/SP377.1 DOI: https://doi.org/10.1144/SP377.1

Balaram, V., y Subramanyam, K. S. V. (2022) Sample Preparation for Geochemical Analysis: Strategies and Significance. Advances in Sample Preparation, 32(2). 15-32. Disponible en https://doi.org/10.1016/j.sampre.2022.100010 DOI: https://doi.org/10.1016/j.sampre.2022.100010

Bayona, G., Bustamante, C., Nova, G., y Salazar Franco, A. (2020) Jurassic evolution of the northwestern corner of Gondwana: Present knowledge and future challenges in studying Colombian Jurassic rocks. In: The Geology of Colombia Volume 2 Mesozoic. Ed. J. Gómez, A. y Pinilla–Pachon, O. Bogotá, Colombia: Servicio Geológico Colombiano, Publicaciones Geológicas Especiales 36, pp. 171–207. Disponible en https://doi.org/10.32685/pub.esp.36.2019.05 DOI: https://doi.org/10.32685/pub.esp.36.2019.05

Bennison, G. M., Olver, P. A. y Moseley, K. A. 2011. An introduction to geological structures and maps. Disponible en: https://doi.org/10.4324/9780203783795 [Consultado 17-01-2023] DOI: https://doi.org/10.4324/9780203783795

Boynton, W. V. 1984. Cosmochemistry of the rare earth elements: meteorite studies. En Henderson, P., Ed. Developments in geochemistry. Elsevier 2: 63-114. Disponible en https://doi.org/10.1016/B978-0-444-42148-7.50008-3 DOI: https://doi.org/10.1016/B978-0-444-42148-7.50008-3

British Geological Survey - Corporación de Desarrollo e investigación geológico minero metalúrgica, BGS–CODIGEM (1994) Geological and metal ocurrence maps of the Cordillera Real and El Oro metamorphic belts, Ecuador. Quito-Ecuador: Ministerio de Energía y Minas. 90.

Bunaciu, A. A., Udri?Tioiu, E. G. y H. Y. Aboul-Enein. 2015. X-ray diffraction: instrumentation and applications. Critical reviews in analytical chemistry, 45(4), 289-299. Disponible en https://doi.org/10.1080/10408347.2014.949616 DOI: https://doi.org/10.1080/10408347.2014.949616

Cabanis, B. y Lecolle, M. (1989) Le diagramme La/10–Y/15–Nb/8; un outil pour la discrimination des series volcaniques et la mise en evidence des processus de melange et/ou de contamination crustale. The La/10–Y/15–Nb/8 diagram; a tool for distinguishing volcanic series and discovering crustal mixing and/or contamination. Comptes Rendus de l'Academie des Sciences, Serie 2, Mecanique, Physique, Chimie, Sciences de l'Univers, Sciences de la Terre, 309, (20), 2023-2029.

Chakhmouradian, A. R. y Zaitsev A. N. (2012) Rare earth mineralization in igneous rocks: sources and processes. Elements, 8(5), 347-353. Disponible en https://doi.org/10.2113/gselements.8.5.347 DOI: https://doi.org/10.2113/gselements.8.5.347

Chiaradia, M., Vallance, J., Fontboté, L., Stein, H., Schaltegger, U., Coder, J., Villenuve, M. and Gendall, I. (2009) U–Pb, Re–Os, and 40Ar/39Ar geochronology of the Nambija Au–skarn and Pangui porphyry Cu deposits, Ecuador: implications for the Jurassic metallogenic belt of the Northern Andes. Mineralium Deposita, 44(4), 371-387, Disponible en https://doi.org/10.1007/s00126–008–0210–6 DOI: https://doi.org/10.1007/s00126-008-0210-6

Cochrane, R. (2013) U-Pb thermochronology, geochronology and geochemistry of NW South America: rift to drift transition, active margin dynamics and implications for the volume balance of continents. Doctoral dissertation. University of Geneva.

Coder, J. M. (2001) Geologic setting, geochronologic relationships, and lithogeochemistry of the Pangui porphyry copper district, southeast Ecuador. M.Sc. thesis: University of Alberta, Edmonton, Canada.

Corporación de Desarrollo e investigación geológico minero metalúrgica – CODIGEM (1991) Informe final y perfil geológico de la Hoja Geológica de Indanza, Escala 1:100.000. Quito-Ecuador: Ministerio de recursos no renovables del Ecuador. Informe no publicado.

Cox, K. G., Bell, J. D. y Pankhurst, R. J. 2013. The interpretation of igneous rocks. Springer Science y Business Media. Disponible en: http://dx.doi.org/10.1007/978-94-017-3373-1 [Consultado 17-1-2023] DOI: https://doi.org/10.1007/978-94-017-3373-1

Dirección Nacional de Geología – DINAGE (2001) Informe económico de prospectos geológicos en la provincia de Morona Santiago, Ecuador. Quito-Ecuador: Ministerio de recursos no renovables del Ecuador. Informe no publicado, 2001.

Frost, B. 2001. A geochemical classification for granitic rocks. Journal of Petrology 42(11): 2033-2048. Disponible en https://doi.org/10.1093/petrology/42.11.2033 DOI: https://doi.org/10.1093/petrology/42.11.2033

Frost, C. D. y Frost, B. R. (2010) On ferroan (A–type) granitoids: their compositional variability and modes of origin. Journal of petrology, 52(1), 39–53. Disponible en https://doi.org/10.1093/petrology/egq070. DOI: https://doi.org/10.1093/petrology/egq070

Gramal, A., Carranco, F., Romero, C., Pulupa, R., Calderón, D., y Toainga, S. (2021) Evidencias de canibalización de secuencias Cretácicas y Paleógenas e la Cuenca Oriente en la cuña orogénica de los Andes ecuatorianos. Boletín de Geología, 43(3), 15–34, Disponible en https://doi.org/10.18273/revbol.v43n3–2021001 DOI: https://doi.org/10.18273/revbol.v43n3-2021001

Gutiérrez, E. G., Horton, B. K., Vallejo, C., Jackson, L. J., y George, S. W. (2019) Provenance and geochronological insights into Late Cretaceous-Cenozoic foreland basin development in the Subandean Zone and Oriente Basin of Ecuador. In Andean Tectonics, Eds by Horton, B.K., y Folguera A. Elsevier, 237-268. Disponible en https://doi.org/10.1016/B978-0-12-816009-1.00011-3 DOI: https://doi.org/10.1016/B978-0-12-816009-1.00011-3

Harris, N. B., Pearce, J. A. y Tindle, A. G. 1986. Geochemical characteristics of collision-zone magmatism. Geological Society, London, Special Publications, 19(1): 67-81. Disponible en https://doi.org/10.1144/GSL.SP.1986.019.01.04 DOI: https://doi.org/10.1144/GSL.SP.1986.019.01.04

Hastie, A. R., Kerr, A. C., Pearce, J. A., y Mitchell, S. F. (2007) Classification of altered volcanic island arc rocks using immobile trace elements: development of the Th–Co discrimination diagram. Journal of petrology, 48(12), 2341–2357. Disponible en https://doi.org/10.1093/petrology/egm062. DOI: https://doi.org/10.1093/petrology/egm062

Instituto de Investigación Geológico y Energético -IIGE (2019). Memoria Técnica de la Hoja Geológica Méndez, escala 1:100 000. Quito-Ecuador: Ministerio de Energía y Minas, 2019. [publicación no seriada]

J. Drobe, D. Lindsay, H. Stein, and J. Gabites, “Geology, mineralization, and geochronological constraints of the Mirador Cu–Au porphyry district, southeast Ecuador,” Economic Geology, vol. 108, no. 1, pp. 11–35, 2013. Disponible en https://doi.org/10.2113/econgeo.108.1.11 DOI: https://doi.org/10.2113/econgeo.108.1.11

Janoušek, V., Moyen, J. F., Erban, V. y Hora, J. 2019. GCDkit goes platform independent!. Goldschmidt 2019 Abstrac Memories. Barcelona: European Association of Geochemistry, Geochemical Society.

Jerram, D. y Petford, N. (2011) The field description of igneous rocks. 2nd ed. John Wiley & Sons,

Johannes, W. y Holtz, F. (2012) Petrogenesis and experimental petrology of granitic rocks. 1rs ed. Springer Science & Business Media.

Kumar, V., Kumar, S., Kumar, N. y Bangroo, P. N. (2013). Separation and pre-concentration of rare earth elements in geological materials using used green tea leaves and their determination by ICP-OES. Journal of the Indian Chemical Society, 90(11), 2147-2151.

Le Maitre, R. W., Streckeisen, A., Zanettin, B., Le Bas, M. J., Bonin, B., Bateman, P., Bellieni, G., Dudek, A., Efremova, S., Keller, J., Lameyre, J., Sabine, P. A., Schmid R., Sorensen, H. y Woolley A. R. (2002). Igneous Rocks: A Classification and Glossary of Terms: Recommendations of the International Union of Geological Sciences Subcommission on the Systematics of Igneous Rocks (2nd ed.). Cambridge: Cambridge UniversityPress. Disponible en: https://doi.org/10.1017/CBO9780511535581.001 [Consultado 17-01-2023] DOI: https://doi.org/10.1017/CBO9780511535581.001

Leary, S. Sillitoe, R. H. Stewart, P. W. Roa, K. J. y Nicolson, B. E. (2016) Discovery, Geology, and Origin of the Fruta del Norte Epithermal Gold–Silver Deposit, Southeastern Ecuador. Economic Geology, 111(1), 1043–1072. Disponible en: https://doi.org/10.2113/econgeo.111.5.1043 DOI: https://doi.org/10.2113/econgeo.111.5.1043

Litherland, M. Aspden, J. A. y Jemielita, R. A. (1994) The metamorphic belts of Ecuador. British Geological Survey, Overseas Memoir 11, BGS, pp. 147.

Luzieux, L. D., Heller, F., Spikings, R., Winkler W., y Vallejo, C. (2005) Cretaceous block rotations in the coastal forearc of Ecuador: paleomagnetic, chronstratigraphic evidences, and implications for the origin and accretion of the blocks. In 6th ISAG Meeting, Barcelona.

Maniar, P. D. y Piccoli, P. M. 1989. Tectonic discrimination of granitoids. Geological society of America bulletin 101(5): 635-643. Disponible en: https://doi.org/10.1130/0016-7606(1989)101%3C0635:TDOG%3E2.3.CO;2 DOI: https://doi.org/10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2

McDonough, W. F. y Sun, S. S. 1995. The composition of the Earth. Chemical geology 120(3-4): 223-253. Disponible en: https://doi.org/10.1016/0009-2541(94)00140-4 DOI: https://doi.org/10.1016/0009-2541(94)00140-4

McGregor, V. D. (2013). Geological and economic analysis of the La Victoria Chica prospect,” Doctoral dissertation, University Alberta.

Middlemost, E. A. 1994. Naming materials in the magma/igneous rock system. Earth-science reviews, 37(3-4): 215-224. Disponible en: https://doi.org/10.1016/0012-8252(94)90029-9 DOI: https://doi.org/10.1016/0012-8252(94)90029-9

Moyen, J. F. (2020) Archean granitoids: classification, petrology, geochemistry, and origin. Geological Society, London, Special Publications, 496(1), 15-49, Disponible en: https://doi.org/10.1144/SP489–2018–34. DOI: https://doi.org/10.1144/SP489-2018-34

Oyedotun, T. D. T. 2018. X-ray fluorescence (XRF) in the investigation of the composition of earth materials: a review and an overview. Geology, Ecology, and Landscapes, 2(2), 148-154. Disponible en: https://doi.org/10.1080/24749508.2018.1452459 DOI: https://doi.org/10.1080/24749508.2018.1452459

Pearce, J. A., Harris, N. B. y Tindle, A. G. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of petrology, 25(4), 956-983. Disponible en: https://doi.org/10.1093/petrology/25.4.956 DOI: https://doi.org/10.1093/petrology/25.4.956

Pinto, F. G., Junior, R. E. y Saint'Pierre, T. D. 2012. Sample preparation for determination of rare earth elements in geological samples by ICP-MS: a critical review. Analytical letters, 45(12), 1537-1556. Disponible en: https://doi.org/10.1080/00032719.2012.677778 DOI: https://doi.org/10.1080/00032719.2012.677778

Pratt, W. T., Duque, P., and Ponce, M. (2005) An autochthonous geological model for the eastern Andes of Ecuador. Tectonophysics, 399 (4), 251-278. Disponible en: https://doi.org/10.1016/j.tecto.2004.12.025 DOI: https://doi.org/10.1016/j.tecto.2004.12.025

Proyecto de Desarrollo Minero y Control Ambiental, Evaluación de Distritos Mineros, PRODEMINCA, (2000) Potencial Minero Metálico y Guías de Exploración Vol. 1. Quito - Ecuador: Ministerio de Energía y Minas. 280.

Ray, J. Sen, J. y Ghosh, B. (2011). Topics in igneous petrology, Londres, Reino Unido: Springer Science Business Media. DOI: https://doi.org/10.1007/978-90-481-9600-5

Romero, C. W., Condoy, D. P., Menéndez, B., y Gallardo, O. (2020) Provenience análisis in Mesozoic sequence in the cordillera Cutucu En Actas completas del 15º Encuentro del Centro Internacional de Ciencias de la Tierra. Gomez M., Filipussi D., y Lenzano L. (comp.), Buenos Aires-Argentina: Centro Internacional de Ciencias de la Tierra. ISBN 978-987-1323-64-7.

Romero, C., Gramal, A. B., Carranco, F., y Toainga, S. D. (2019) Asociación de facies: La clave para la identificación de la Formación Hollín en la región sur oriental del Ecuador. Revista Científica GeoLatitud, 2(1), 9-23. Disponible en: https://geolatitud.geoenergia.gob.ec/ojs/ojs/index.php/GeoLatitud/article/view/31/65

Romeuf, N. (1994) Volcanisme Jurassique et metamorphisme en Equateur et au Perou. Caractéristiques pétrographiques, minéralogiques et géochimiques. Implications géodynamiques. Thèsede Doctorat d Université Unpublished.Université d'Aix-Marseille III, Editions de I'ORSTOM, Travaux et Documents de Microfiches, 139.

Spikings, R., Cochrane, R., Villagomez, D., Van der Lelij, R., Vallejo, C., Winkler, W., y Beate, B. (2015) The geological history of northwestern South America: from Pangaea to the early collision of the Caribbean Large Igneous Province (290–75 Ma). Gondwana Research, 27(1), 95-139. Disponible en: https://doi.org/10.1016/j.gr.2014.06.004 DOI: https://doi.org/10.1016/j.gr.2014.06.004

Tschopp, H. J. (1953) Oil explorations in the Oriente of Ecuador. AAPG Bulletin, 37 (10), 2303-2347. Disponible en: https://doi.org/10.1306/5CEADD94-16BB-11D7-8645000102C1865D DOI: https://doi.org/10.1306/5CEADD94-16BB-11D7-8645000102C1865D

Vallejo, C., Romero, C., Horton, B. K., Spikings, R. A., Gaibor, J., Winkler, W., y Mariño, E. (2021) Jurassic to Early Paleogene sedimentation in the Amazon region of Ecuador: Implications for the paleogeographic evolution of northwestern South America. Global and Planetary Change, 204 (1), 103555. Disponible en: https://doi.org/10.1016/j.gloplacha.2021.103555 DOI: https://doi.org/10.1016/j.gloplacha.2021.103555

Vallejo, C., Spikings, R. A., Horton, B. K., Luzieux, L., Romero, C., Winkler, W., y Thomsen, T. B. (2019) Late Cretaceous to Miocene stratigraphy and provenance of the coastal forearc and Western Cordillera of Ecuador: Evidence for accretion of a single oceanic plateau fragment. In: Andean Tectonics. Eds by Horton, B.K., y Folguera A. Elsevier, 209-236. Disponible en: https://doi.org/10.1016/B978–0–12–816009–1.00010–1. DOI: https://doi.org/10.1016/B978-0-12-816009-1.00010-1

Winchester, J. A., y Floyd, P. A. (1997) Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chemical geology, 20(1), 325-343. Disponible en: https://doi.org/10.1016/0009-2541(77)90057-2 DOI: https://doi.org/10.1016/0009-2541(77)90057-2

El ambiente tectónico del intrusivo Limón, Morona Santiago, Ecuador

Descargas

Publicado

2023-11-07

Cómo citar

Romero Cóndor, C. W., Castillo Jara, M., Oñate Acurio, L., Condoy Guairacocha, D., Velíz Zambrano, M. E., Pazmiño Aguiar, P. D., Carranco Andino, F., & Gramal Aguilar, A. B. . (2023). El ambiente tectónico del intrusivo Limón, Morona Santiago, Ecuador. Acta Geológica Lilloana, 34(2), 129–152. https://doi.org/10.30550/j.agl/2023.34.2/1819
صندلی اداری سرور مجازی ایران Decentralized Exchange

Número

Sección

Artículos

Artículos más leídos del mismo autor/a

فروشگاه اینترنتی صندلی اداری جوراب افزایش قد ژل افزایش قد خرید vpn خرید vpn سرور مجازی بایننس