Insights into the fatty acid profile and taxonomy of the extremophilic moss Hedwigia emodica (Bryophyta, Hedwigiales, Hedwigiaceae)

Autores

DOI:

https://doi.org/10.30550/j.lil/2092

Palavras-chave:

GC-MS, LC-PUFA, mosses, ω-3-Fatty acid, quantification

Resumo

Os musgos extremófilos são conhecidos por produzir uma variedade de ácidos graxos poli-insaturados de cadeia longa em resposta a vários estresses abióticos. Esses ácidos graxos ajudam na fluidez da membrana que permite sua sobrevivência em condições extremas. O presente estudo, portanto, investiga o perfil de ácidos graxos e a taxonomia de um musgo extremófilo Hedwigia emodica. A espécie foi encontrada nos bolsões da região do Himalaia do noroeste da Índia e é caracterizada por certos caracteres de identificação, como folhas retas, 0,6–0,8 mm de largura; ponta longa e pontiaguda de cabelo hialino ca. 20?40% do comprimento da folha; margens das folhas fracamente recurvadas ou planas; células medianas das folhas com papilas adaxiais simples a minimamente ramificadas; paredes celulares obscurecidas. A análise de cromatografia gasosa-espectrometria de massa revelou um total de 20 ácidos graxos diferentes, que incluem ácidos graxos saturados, monoinsaturados e poli-insaturados. O ácido ?-linolênico é encontrado nas maiores quantidades com 35,44% do total de ácidos graxos, seguido pelo ácido araquidônico com 15,05% do total de ácidos graxos. Também quantificamos esses ácidos graxos por grama de tecido de musgo. O conteúdo de ácido linolênico (ácido graxo essencial ?-3) foi o de maior valor com 5059,861±0,667 ?g/g entre todos os ácidos graxos, enquanto o ácido ?-linoleico (ácido graxo essencial ?-6) foi 1785,248±0,009 ?g/g. A quantidade de ácidos graxos poliinsaturados de cadeia longa, como ácido eicosapentaenoico e araquidônico, foi de 1026,379±0,066 e 2137,953±0,058 ?g/g, respectivamente. Nossas descobertas revelaram uma proporção significativa de ácidos graxos nutricionalmente, medicinalmente e biologicamente importantes que podem ser usados ??para fins industriais. O presente estudo é a primeira quantificação de estimativa de ácidos graxos neste táxon. Essas descobertas abrirão caminhos para a condução de pesquisas futuras no campo da bioquímica de lipídios de musgos e influência ambiental sobre ácidos graxos de musgos.

Downloads

Não há dados estatísticos.

Referências

Beike, A. K., Jaeger, C., Zink, F., Decker, E. L. & Reski, R. (2014). High contents of very long-chain polyunsaturated fatty acids in different moss species. Plant Cell Reports 33: 245-254. https://doi.org/10.1007/s00299-013-1525-z

Boelen, P., van Dijk, R., Sinninghe Damsté, J. S., Rijpstra, W. I. C. & Buma, A. G. (2013). On the potential application of polar and temperate marine microalgae for EPA and DHA production. AMB Express 3: 1-9. https://doi.org/10.1186/2191-0855-3-26

Brash, A. R. (2001). Arachidonic acid as a bioactive molecule. The Journal of clinical investigation 107 (11): 1339-1345. https://doi.org/10.1172/JCI13210

Cahoon, E. B. & Li-Beisson, Y. (2020). Plant unusual fatty acids: learning from the less common. Current opinion in plant biology 55: 66-73. https://doi.org/10.1016/j.pbi.2020.03.007

Calder, P. C. (2021). Health benefits of omega-3 fatty acids. In: García-Moreno, P. J., Jacobsen, C., Sørensen, A. D. M., Yesiltas, B. (Editors). Omega-3 Delivery Systems. USA (pp. 25–53) Academic Press. https://doi.org/10.1016/b978-0-12-821391-9.00006-5

Canli, K., Cetin, B., Altuner, E. M., Turkmen, Y., Uzek, U. & Dursun, H. (2014). In vitro antimicrobial screening of Hedwigia ciliata var. leucophaea and determination of the ethanol extract composition by gas chromatography/mass spectrometry (GC/MS). Mass Spectrometry (GC/MS). Journal of Pure and Applied Microbiology 8 (4): 2987-2998.

Choudhary, A. K. & Mishra, G. (2021). Functional characterization and expression profile of microsomal FAD2 and FAD3 genes involved in linoleic and ?-linolenic acid production in Leucas cephalotes. Physiology and Molecular Biology of Plants 27 (6):1233-1244. https://doi.org/10.1007/s12298

Choudhary, A. K., Sunojkumar, P. & Mishra, G. (2017). Fatty acid profiling and multivariate analysis in the genus Leucas reveals its nutritional, pharmaceutical and chemotaxonomic significance. Phytochemistry 143: 72-80. https://doi.org/10.1016/j.phytochem.2017.07.007

Dalton, N. J., Kungu, E. M. & Long, D. G. (2013). A taxonomic revision of Hedwigiaceae Schimp. from the Sino-Himalaya. Journal of Bryology 35 (2): 96-111. https://doi.org/10.1179/1743282012Y.0000000043

Dembitsky, V. M., Rezanka, T., Bychek, I. A. & Afonina, O. M. (1993). Polar lipid and fatty acid composition of some bryophytes. Phytochemistry 33 (5): 1009-1014. https://doi.org/10.1016/0031-9422(93)85013-H

Din, J. N., Newby, D. E. & Flapan, A. D. (2004). Omega 3 fatty acids and cardiovascular disease—fishing for a natural treatment. BMJ 328 (7430): 30-35. https://doi.org/10.1136/bmj.328.7430.30

Doughman, S. D., Krupanidhi, S. & Sanjeevi, C. B. (2007). Omega-3 fatty acids for nutrition and medicine: considering microalgae oil as a vegetarian source of EPA and DHA. Current Diabetes Reviews 3 (3): 198-203. https://doi.org/10.2174/157339907781368968

Filippova, I. P., Makhutova, O. N., Guseynova, V. E. & Gladyshev, M. I. (2023). Fatty Acid Profiles of Some Siberian Bryophytes and Prospects of Their Use in Chemotaxonomy. Biomolecules 13 (5): 840. https://doi.org/10.3390/biom13050840

Hedenäs, L. (1994). The Hedwigia ciliata complex in Sweden, with notes on the occurrence of the taxa in Fennoscandia. Journal of Bryology 18 (1): 139-157. https://doi.org/10.1179/jbr.1994.18.1.139

Horrobin, D. F. (1992). Nutritional and medical importance of gamma-linolenic acid. Progress in Lipid Research 31 (2): 163-194. https://doi.org/10.1016/0163-7827(92)90008-7

http://archpsyc.jamanetwork.com/pdfaccess.ashx?url=/data/journals/psych/12572/

Ignatova, E. A., Kuznetsova, O. I., Fedosov, V. E. & Ignatov, M. S. (2016). On the genus Hedwigia (Hedwigiaceae, Bryophyta) in Russia. Arctoa 25 (2): 241-277. https://doi.org/10.15298/arctoa.25.20

Kazaz, S., Miray, R., Lepiniec, L. & Baud, S. (2022). Plant monounsaturated fatty acids: Diversity, biosynthesis, functions and uses. Progress in lipid research 85: 101138. https://doi.org/10.1016/j.plipres.2021.101138

Lausanne, S., Akiskal, H. S., Walker, P., Puzantian, U., Pickar, D., Murphy, D. L., Cohen, R. M. & Campbell, I. C. (1983). Bipolar outcome in the course of depressive illness: phenomenologic, familial, and pharmacologic predictors. Journal of affective disorders 5 (2): 115-128.

Lu, Y., Eiriksson, F. F., Thorsteinsdóttir, M. & Simonsen, H. T. (2019). Valuable fatty acids in bryophytes-Production, biosynthesis, analysis and applications. Plants 8 (11): 524. https://doi.org/10.3390/plants8110524

Lu, Y., Eiriksson, F. F., Thorsteinsdóttir, M., Cronberg, N. & Simonsen, H. T. (2023). Lipidomes of Icelandic bryophytes and screening of high contents of polyunsaturated fatty acids by using lipidomics approach. Phytochemistry 206: 113560. https://doi.org/10.1016/j.phytochem.2022.113560

Ludwiczuk, A. & Asakawa, Y. (2019). Bryophytes as a source of bioactive volatile terpenoids–A review. Food and Chemical Toxicology 132: 110649. https://doi.org/10.1016/J.FCT.2019.110649

Luni?, T., Boži?, B. & Nedeljkovi?, B. B. (2022). Immunomodulatory Potential of Hedwigia ciliata and Hypnum cupressiforme. In: Murthy, H. N. (Editor), Bioactive Compounds in Bryophytes and Pteridophytes. India: 1-29. Springer Cham. https://doi.org/10.1007/978-3-030-97415-2_5-1

Lv, Y., Li, K., Wang, S., Wang, X., Yue, G., Zhang, Y.... & Cui, Y. (2024). Protective role of arachidonic acid against diabetic myocardial ischemic injury: a translational study of pigs, rats, and humans. Cardiovascular Diabetology 23 (1): 58. https://doi.org/10.1186/s12933-024-02123-3

Mata-Pérez, C., Sánchez-Calvo, B., Begara-Morales, J. C., Luque, F., Jiménez-Ruiz, J., Padilla, M. N., ... & Barroso, J. B. (2015). Transcriptomic profiling of linolenic acid-responsive genes in ROS signaling from RNA-seq data in Arabidopsis. Frontiers in Plant Science 6: 122. https://doi.org/10.3389/fpls.2015.00122

Mba, O. I., Dumont, M. J. & Ngadi, M. (2015). Palm oil: Processing, characterization and utilization in the food industry–A review. Food Bioscience 10: 26-41. https://doi.org/10.1016/j.fbio.2015.01.003

Moncada, S. & Vane, J. R. (1979). Arachidonic acid metabolites and the interactions between platelets and blood-vessel walls. New England Journal of Medicine 300 (20): 1142-1147. https://doi.org/10.1056/NEJM197905173002006

Mühlroth, A., Li, K., Røkke, G., Winge, P., Olsen, Y., Hohmann-Marriott, M. F., ... & Bones, A. M. (2013). Pathways of lipid metabolism in marine algae, co-expression network, bottlenecks and candidate genes for enhanced production of EPA and DHA in species of Chromista. Marine drugs 11 (11): 4662-4697. https://doi.org/10.3390/md11114662

Nelson, J. R. & Raskin, S. (2019). The eicosapentaenoic acid: arachidonic acid ratio and its clinical utility in cardiovascular disease. Postgraduate medicine 131 (4): 268-277. https://doi.org/10.1080/00325481.2019.1607414

Pereira, H., Barreira, L., Figueiredo, F., Custódio, L., Vizetto-Duarte, C., Polo, C., ... & Varela, J. (2012). Polyunsaturated fatty acids of marine macroalgae: potential for nutritional and pharmaceutical applications. Marine drugs 10 (9): 1920-1935. https://doi.org/10.3390/MD10091920

Poddar-Sarkar, M., Biswas Raha, A., Datta, J. & Mitra, S. (2022). Chemotaxonomic and evolutionary perspectives of Bryophyta based on multivariate analysis of fatty acid fingerprints of Eastern Himalayan mosses. Protoplasma 1-13. https://doi.org/10.1007/s00709-021-01723-0

Ramakrishna, A. R. & Ravishankar, G. A. (2011). Influence of biotic stress signals on secondary metabolites in plants. Plant Signaling and Behaviour 6 (11): 1720-1731. https://doi.org/10.4161/psb.6.11.17613

Sharma, R. (2012). Omega-3 Fatty Acids in Prevention of Cardiovascular Disease in Humans: Chemistry, Dyslipidemia. In: Watson, R. R., Preedy, V. R. (Editors), Bioactive Food as Dietary Interventions for Cardiovascular Disease: Bioactive Foods in Chronic Disease States. United Kingdom: (pp. 465-489), Elsevier Science. https://doi.org/10.1016/B978-0-12-396485-4.00028-1

Wilczynska-Kwiatek, A., Singh, R. B. & De Meester, F. (2010). Nutrition and behaviour: the role of ?3 fatty acids. The Open Nutraceuticals Journal 3 (1). http://dx.doi.org/10.2174/18763960010030300119

Yeshi, K., Crayn, D., Ritmejeryt?, E. & Wangchuk, P. (2022). Plant secondary metabolites produced in response to abiotic stresses has potential application in pharmaceutical product development. Molecules 27 (1):313. https://doi.org/10.3390/MOLECULES27010313

Zurier, R. B., Rossetti, R. G., Jacobson, E. W., Demarco, D. M., Liu, N. Y., Temming, J. E., ... & Laposata, M. (1996). Gamma?linolenic acid treatment of rheumatoid arthritis. A randomized, placebo?controlled trial. Arthritis & Rheumatism 39 (11): 1808-1817. https://doi.org/10.1002/art.1780391106

Estudios del perfil de ácidos grasos y la taxonomía del musgo extremófilo Hedwigia emodica (Bryophyta, Hedwigiales, Hedwigiaceae)

Downloads

Publicado

2025-04-22

Como Citar

Dhyani, A., Choudhary, A., Shantanu, K., & Uniyal, P. L. (2025). Insights into the fatty acid profile and taxonomy of the extremophilic moss Hedwigia emodica (Bryophyta, Hedwigiales, Hedwigiaceae). Lilloa, 62(1), 173–186. https://doi.org/10.30550/j.lil/2092

Edição

Seção

Artículos originales