Mycorrhizal biofertilizer: advantages and hindrances in its application
DOI:
https://doi.org/10.30550/j.lil/2141Keywords:
Agricultural productivity, agrochemicals, biofertilizers, global climate change, mycorrhizaAbstract
Global climate change, rising population growth, and the overuse of agrochemicals have led to various problems, including soil degradation, a decline in food production, and environmental issues affecting the agricultural sector. To overcome these challenges, biofertilizers (particularly, those of mycorrhizal origin) have emerged as a sustainable and eco-friendly alternative. Arbuscular mycorrhiza (AM) is an association between plant roots and fungi from the subphylum Glomeromycotina, found in approximately 72% of land plants, and is one of the most common and ancient types of symbiosis on Earth. AM fungi provide with numerous benefits in exchange for plant photoassimilates. Although AM fungi may represent a viable biofertilizer option, their use is significantly limited due to various issues, ranging from their production to field application. This review sheds light on the potential of AM fungi as biofertilizers, analyzing their diverse benefits while also addressing the limitations associated with their production and application for enhancing agricultural productivity.
Downloads
References
Aliyu, I. A., Yusuf, A. A., Uyovbisere, E. O., Masso, C. & Sanders, I. R. (2019). Effect of co-application of phosphorus fertilizer and in vitro-produced mycorrhizal fungal inoculants on yield and leaf nutrient concentration of cassava. PLoS ONE 14 (6): e0218969. https://doi.org/10.1371/journal.pone.0218969
Ammar, E. E., Rady, H. A., Khattab, A. M., Amer, M. H., Mohamed, S. A., Elodamy, N. I., Al-Farga, A. & Aioub, A. A. A. (2023). A comprehensive overview of eco-friendly bio-fertilizers extracted from living organisms. Environmental Science and Pollution Research 30 (53): 113119-113137. https://doi.org/10.1007/s11356-023-30260-x
Ardestani, N. K., Zare-Maivan, H. & Ghanati, F. (2011). Effect of different concentrations of potassium and magnesium on mycorrhizal colonization of maize in pot culture. African Journal of Biotechnology 10 (73). https://doi.org/10.5897/ajb11.556
Aseel, D. G., Rashad, Y. M. & Hammad, S. M. (2019). Arbuscular Mycorrhizal Fungi Trigger Transcriptional Expression of Flavonoid and Chlorogenic Acid Biosynthetic Pathways Genes in Tomato against Tomato Mosaic Virus. Scientific Reports 9 (1). https://doi.org/10.1038/s41598-019-46281-x
Aslanta?, R., Çakmakçi, R. & ?ahin, F. (2007). Effect of plant growth promoting rhizobacteria on young apple tree growth and fruit yield under orchard conditions. Scientia Horticulturae 111 (4): 371-377. https://doi.org/10.1016/j.scienta.2006.12.016
Augé, R. M., Toler, H. D. & Saxton, A. M. (2015). Arbuscular mycorrhizal symbiosis alters stomatal conductance of host plants more under drought than under amply watered conditions: a meta-analysis. Mycorrhiza 25 (1): 13-24. https://doi.org/10.1007/s00572-014-0585-4
Bai, Z., Li, H., Yang, X., Zhou, B., Shi, X., Wang, B., Li, D., Shen, J., Chen, Q., Qin, W., Oenema, O. & Zhang, F. (2013). The critical soil P levels for crop yield, soil fertility and environmental safety in different soil types. Plant Soil 372: 27-37. https://doi.org/10.1007/s11104-013-1696-y
Bakhshandeh, S., Corneo, P. E., Mariotte, P., Kertesz, M. A. & Dijkstra, F. A. (2017). Effect of crop rotation on mycorrhizal colonization and wheat yield under different fertilizer treatments. Agriculture Ecosystems & Environment 247: 130-136. https://doi.org/10.1016/j.agee.2017.06.027
Barros-Rodríguez, A., Pacheco, P., Peñas-Corte, M., Fernández-González, A. J., Cobo-Díaz, J. F., Enrique-Cruz, Y. & Manzanera, M. (2024). Comparative Study of Bacillus-Based Plant Biofertilizers: A proposed index. Biology 13 (9): 668. https://doi.org/10.3390/biology13090668
Baslam, M. & Goicoechea, N. (2012). Water deficit improved the capacity of arbuscular mycorrhizal fungi (AMF) for inducing the accumulation of antioxidant compounds in lettuce leaves. Mycorrhiza 22 (5): 347-359. https://doi.org/10.1007/s00572-011-0408-9
Begum, N., Qin, C., Ahanger, M. A., Raza, S., Khan, M. I., Ashraf, M., Ahmed, N. & Zhang, L. (2019). Role of arbuscular mycorrhizal fungi in plant Growth Regulation: Implications in abiotic stress Tolerance. Frontiers in Plant Science 10. https://doi.org/10.3389/fpls.2019.01068
Bencherif, K., Djaballah, Z., Brahimi, F., Boutekrabt, A., Dalpè, Y. & Sahraoui, A. L. (2019). Arbuscular mycorrhizal fungi affect total phenolic content and antimicrobial activity of Tamarix gallica in natural semi-arid Algerian areas. South African Journal of Botany 125: 39-45. https://doi.org/10.1016/j.sajb.2019.06.024
Bennett, A. E. & Groten, K. (2022). The Costs and benefits of Plant–Arbuscular mycorrhizal fungal interactions. Annual Review of Plant Biology 73 (1): 649-672. https://doi.org/10.1146/annurev-arplant-102820-124504
Bona, E., Lingua, G., Manassero, P., Cantamessa, S., Marsano, F., Todeschini, V., Copetta, A., D’Agostino, G., Massa, N., Avidano, L., Gamalero, E. & Berta, G. (2015). AM fungi and PGP pseudomonads increase flowering, fruit production, and vitamin content in strawberry grown at low nitrogen and phosphorus levels. Mycorrhiza 25 (3): 181-193. https://doi.org/10.1007/s00572-014-0599-y
Bona, E., Cantamessa, S., Massa, N., Manassero, P., Marsano, F., Copetta, A., Lingua, G., D’Agostino, G., Gamalero, E. & Berta, G. (2017). Arbuscular mycorrhizal fungi and plant growth-promoting pseudomonads improve yield, quality and nutritional value of tomato: a field study. Mycorrhiza 27 (1): 1-11. https://doi.org/10.1007/s00572-016-0727-y
Brachmann, A. & Parniske, M. (2006). The most widespread symbiosis on Earth. PLoS Biology 4 (7): e239. https://doi.org/10.1371/journal.pbio.0040239
Brito, I., Goss, M. J., De Carvalho, M., Chatagnier, O. & Van Tuinen, D. (2012). Impact of tillage system on arbuscular mycorrhiza fungal communities in the soil under Mediterranean conditions. Soil and Tillage Research 121: 63-67. https://doi.org/10.1016/j.still.2012.01.012
Brundrett, M. C. & Tedersoo, L. (2018). Evolutionary history of mycorrhizal symbioses and global host plant diversity. New Phytologist 220 (4): 1108-1115. https://doi.org/10.1111/nph.14976
Cameron, D. D., Neal, A. L., Van Wees, S. C. & Ton, J. (2013). Mycorrhiza-induced resistance: more than the sum of its parts?. Trends in Plant Science 18 (10): 539-545. https://doi.org/10.1016/j.tplants.2013.06.004
Castillo, C. G., Rubio, R., Rouanet, J. L. & Borie, F. (2006). Early effects of tillage and crop rotation on arbuscular mycorrhizal fungal propagules in an Ultisol. Biology and Fertility of Soils 43 (1): 83-92. https://doi.org/10.1007/s00374-005-0067-0
Cavagnaro, T. R. (2014). Impacts of compost application on the formation and functioning of arbuscular mycorrhizas. Soil Biology and Biochemistry 78: 38-44. https://doi.org/10.1016/j.soilbio.2014.07.007
Cavagnaro, T. R., Bender, S. F., Asghari, H. R. & Van Der Heijden, M. G. (2015). The role of arbuscular mycorrhizas in reducing soil nutrient loss. Trends in Plant Science 20 (5): 283-290. https://doi.org/10.1016/j.tplants.2015.03.004
Ceballos, I., Ruiz, M., Fernández, C., Peña, R., Rodríguez, A. & Sanders, I. R. (2013). The In Vitro Mass-Produced Model Mycorrhizal Fungus, Rhizophagus irregularis, Significantly Increases Yields of the Globally Important Food Security Crop Cassava. PLoS ONE 8 (8): e70633. https://doi.org/10.1371/journal.pone.0070633
Chen, M., Arato, M., Borghi, L., Nouri, E. & Reinhardt, D. (2018). Beneficial services of arbuscular mycorrhizal fungi – From ecology to Application. Frontiers in Plant Science 9. https://doi.org/10.3389/fpls.2018.01270
Chitarra, W., Pagliarani, C., Maserti, B., Lumini, E., Siciliano, I., Cascone, P., Schubert, A., Gambino, G., Balestrini, R. & Guerrieri, E. (2016). Insights on the impact of arbuscular mycorrhizal symbiosis on tomato tolerance to water stress. Plant Physiology 171 (2): 1009-1023. https://doi.org/10.1104/pp.16.00307
Da Silva Campos, M. A. (2020). Bioprotection by arbuscular mycorrhizal fungi in plants infected with Meloidogyne nematodes: A sustainable alternative. Crop Protection135: 105203. https://doi.org/10.1016/j.cropro.2020.105203
De Souza, P. V. D. (2000). Effect of arbuscular mycorrhizae and gibberellic acid interactions on vegetative growth of Carrizo citrange seedlings. Ciência Rural 30 (5): 783-787. https://doi.org/10.1590/s0103-84782000000500007
Dey, M. & Ghosh, S. (2022). Arbuscular mycorrhizae in plant immunity and crop pathogen control. Rhizosphere 22: 100524. https://doi.org/10.1016/j.rhisph.2022.100524
Diagne, N., Ngom, M., Djighaly, P. I., Fall, D., Hocher, V. & Svistoonoff, S. (2020). Roles of arbuscular mycorrhizal fungi on plant growth and performance: Importance in biotic and abiotic stressed regulation. Diversity 12 (10): 370. https://doi.org/10.3390/d12100370
Dowarah, B., Gill, S. S. & Agarwala, N. (2022). Arbuscular mycorrhizal fungi in conferring tolerance to biotic stresses in plants. Journal of Plant Growth Regulation 41 (4): 1429-1444. https://doi.org/10.1007/s00344-021-10392-5
Duell, E. B., Cobb, A. B. & Wilson, G. W. T. (2022). Effects of commercial arbuscular mycorrhizal inoculants on plant productivity and Intra-Radical Colonization in Native Grassland: Unintentional De-Coupling of a symbiosis? Plants 11 (17): 2276. https://doi.org/10.3390/plants11172276
El-Sharkawy, H. H. A., Rashad, Y. M. & Elazab, N. T. (2022). Synergism between Streptomyces viridosporus HH1 and Rhizophagus irregularis Effectively Induces Defense Responses to Fusarium Wilt of Pea and Improves Plant Growth and Yield. Journal of Fungi 8 (7): 683. https://doi.org/10.3390/jof8070683
Etesami, H., Jeong, B. R. & Glick, B. R. (2021). Contribution of arbuscular mycorrhizal fungi, Phosphate–Solubilizing bacteria, and silicon to P uptake by plant. Frontiers in Plant Science 12. https://doi.org/10.3389/fpls.2021.699618
Eulenstein, F., Tauschke, M., Behrendt, A., Monk, J., Schindler, U., Lana, M. & Monk, S. (2017). The application of mycorrhizal fungi and organic fertilisers in horticultural potting soils to improve water use efficiency of crops. Horticulturae 3 (1): 8. https://doi.org/10.3390/horticulturae3010008
Evelin, H., Kapoor, R. & Giri, B. (2009). Arbuscular mycorrhizal fungi in alleviation of salt stress: a review. Annals of Botany 104 (7): 1263-1280. https://doi.org/10.1093/aob/mcp251
Fall, A. F., Nakabonge, G., Ssekandi, J., Founoune-Mboup, H., Apori, S. O., Ndiaye, A., Badji, A. & Ngom, K. (2022). Roles of arbuscular mycorrhizal fungi on soil fertility: contribution in the improvement of physical, chemical, and biological properties of the soil. Frontiers in Fungal Biology 3. https://doi.org/10.3389/ffunb.2022.723892
Fasusi, O. A., Babalola, O. O. & Adejumo, T. O. (2023). Harnessing of plant growth-promoting rhizobacteria and arbuscular mycorrhizal fungi in agroecosystem sustainability. CABI Agriculture and Bioscience 4 (1). https://doi.org/10.1186/s43170-023-00168-0
Feilinezhad, A., Mirzaeiheydari, M., Babaei, F., Maleki, A. & Rostaminya, M. (2022). The effect of tillage, organic matter and mycorrhizal fungi on efficiency and productivity use of nutrients in maize. Communications in Soil Science and Plant Analysis 53 (20): 2719-2733. https://doi.org/10.1080/00103624.2022.2072869
Feng, Z., Liu, X., Qin, Y., Feng, G., Zhou, Y., Zhu, H. & Yao, Q. (2023). Cooperation of arbuscular mycorrhizal fungi and bacteria to facilitate the host plant growth dependent on soil pH. Frontiers in Microbiology 14: 1116943. https://doi.org/10.3389/fmicb.2023.1116943
Ferreyra-Suarez, D., García-Depraect, O. & Castro-Muñoz, R. (2024). A review on fungal-based biopesticides and biofertilizers production. Ecotoxicology and Environmental Safety 283: 116945. https://doi.org/10.1016/j.ecoenv.2024.116945
Fiorilli, V., Vannini, C., Ortolani, F., Garcia-Seco, D., Chiapello, M., Novero, M., Domingo, G., Terzi, V., Morcia, C., Bagnaresi, P., Moulin, L., Bracale, M. & Bonfante, P. (2018). Omics approaches revealed how arbuscular mycorrhizal symbiosis enhances yield and resistance to leaf pathogen in wheat. Scientific Reports 8 (1). https://doi.org/10.1038/s41598-018-27622-8
Frank, A. B. (1885). Ueber die auf Wurzelsymbiose beruhende Ernährung gewisser Bäume durch unterirdische Pilze. Berichte Der Deutschen Botanischen Gesellschaft 3: 128-145.
Frey, S. D. (2019). Mycorrhizal fungi as mediators of soil organic matter dynamics. Annual Review of Ecology Evolution and Systematics 50 (1): 237-259. https://doi.org/10.1146/annurev-ecolsys-110617-062331
Gao, X., Guo, H., Zhang, Q., Guo, H., Zhang, L., Zhang, C., Gou, Z., Liu, Y., Wei, J., Chen, A., Chu, Z. & Zeng, F. (2020). Arbuscular mycorrhizal fungi (AMF) enhanced the growth, yield, fiber quality and phosphorus regulation in upland cotton (Gossypium hirsutum L.). Scientific Reports 10 (1). https://doi.org/10.1038/s41598-020-59180-3
Genre, A., Lanfranco, L., Perotto, S. & Bonfante, P. (2020). Unique and common traits in mycorrhizal symbioses. Nature Reviews Microbiology 18 (11): 649-660. https://doi.org/10.1038/s41579-020-0402-3
Getman?Pickering, Z. L., Stack, G. M. & Thaler, J. S. (2021). Fertilizer quantity and type alter mycorrhizae?conferred growth and resistance to herbivores. Journal of Applied Ecology 58 (5): 931-940. https://doi.org/10.1111/1365-2664.13833
Ghorui, M., Chowdhury, S., Balu, P. & Burla, S. (2024). Arbuscular Mycorrhizal inoculants and its regulatory landscape. Heliyon 10 (9): e30359. https://doi.org/10.1016/j.heliyon.2024.e30359
Ghosh, S., Bhattacharya, D. & Verma, N. K. (2004). Mustard (Brassica campestris L.) cultivation reduces the vesicular-arbuscular mycorrhizal advantage of successive crops. Mycorrhiza News 16 (2): 12-14.
Ghosh, S., Bhowmik, S. & Dutta, S. S. (2024). Challenges in Application of Arbuscular Mycorrhizal Inocula in Conventional Agriculture. In: Parihar, M., Rakshit, A., Adholeya, A. and Chen, Y (Eds.), Arbuscular Mycorrhizal Fungi in Sustainable Agriculture: Inoculum Production and Application. Singapore, Springer, (pp. 229–252). https://doi.org/10.1007/978-981-97-0296-1_11
Gianinazzi, S. & Vosátka, M. (2004). Inoculum of arbuscular mycorrhizal fungi for production systems: science meets business. Canadian Journal of Botany 82 (8): 1264-1271. https://doi.org/10.1139/b04-072
Gorgi, O. E., Fallah, H., Niknejad, Y. & Tari, D. B. (2022). Effect of Plant growth promoting rhizobacteria (PGPR) and mycorrhizal fungi inoculations on essential oil in Melissa officinalis L. under drought stress. Biologia 77 (1): 11-20. https://doi.org/10.1007/s11756-021-00919-2
Gosling, P., Ozaki, A., Jones, J., Turner, M., Rayns, F. & Bending, G. D. (2010). Organic management of tilled agricultural soils results in a rapid increase in colonisation potential and spore populations of arbuscular mycorrhizal fungi. Agriculture Ecosystems & Environment 139 (1-2): 273-279. https://doi.org/10.1016/j.agee.2010.08.013
Grümberg, B. C., Urcelay, C., Shroeder, M. A., Vargas-Gil, S. & Luna, C. M. (2015). The role of inoculum identity in drought stress mitigation by arbuscular mycorrhizal fungi in soybean. Biology and Fertility of Soils 51 (1): 1-10. https://doi.org/10.1007/s00374-014-0942-7
Hanin, M., Ebel, C., Ngom, M., Laplaze, L. & Masmoudi, K. (2016). New insights on plant salt tolerance mechanisms and their potential use for breeding. Frontiers in Plant Science 7. https://doi.org/10.3389/fpls.2016.01787
Harrison, M. J., Dewbre, G. R. & Liu, J. (2002). A Phosphate Transporter from Medicago truncatula Involved in the Acquisition of Phosphate Released by Arbuscular Mycorrhizal Fungi. The Plant Cell 14 (10): 2413-2429. https://doi.org/10.1105/tpc.004861
Hart, M. M., Antunes, P. M., Chaudhary, V. B. & Abbott, L. K. (2018). Fungal inoculants in the field: Is the reward greater than the risk? Functional Ecology 32 (1): 126-135. https://doi.org/10.1111/1365-2435.12976
Hawkins, H., Cargill, R. I., Van Nuland, M. E., Hagen, S. C., Field, K. J., Sheldrake, M., Soudzilovskaia, N. A. & Kiers, E. T. (2023). Mycorrhizal mycelium as a global carbon pool. Current Biology 33 (11): R560-R573. https://doi.org/10.1016/j.cub.2023.02.027
Heklau, H., Schindler, N., Buscot, F., Eisenhauer, N., Ferlian, O., Salcedo, L. D. P. & Bruelheide, H. (2021). Mixing tree species associated with arbuscular or ectotrophic mycorrhizae reveals dual mycorrhization and interactive effects on the fungal partners. Ecology and Evolution 11 (10): 5424-5440. https://doi.org/10.1002/ece3.7437
Hijri, M. (2016). Analysis of a large dataset of mycorrhiza inoculation field trials on potato shows highly significant increases in yield. Mycorrhiza 26 (3): 209-214. https://doi.org/10.1007/s00572-015-0661-4
Hildermann, I., Messmer, M., Dubois, D., Boller, T., Wiemken, A. & Mäder, P. (2010). Nutrient use efficiency and arbuscular mycorrhizal root colonisation of winter wheat cultivars in different farming systems of the DOK long-term trial. Journal of the Science of Food and Agriculture n/a. https://doi.org/10.1002/jsfa.4048
Hu, D., Baskin, J. M., Baskin, C. C., Wang, Z., Zhang, S., Yang, X. & Huang, Z. (2019). Arbuscular mycorrhizal symbiosis and achene mucilage have independent functions in seedling growth of a desert shrub. Journal of Plant Physiology 232: 1-11. https://doi.org/10.1016/j.jplph.2018.11.010
Hunter, M. C., Smith, R. G., Schipanski, M. E., Atwood, L. W. & Mortensen, D. A. (2017). Agriculture in 2050: Recalibrating Targets for Sustainable Intensification. BioScience 67 (4): 386-391. https://doi.org/10.1093/biosci/bix010
Igiehon, N. O. & Babalola, O. O. (2017). Biofertilizers and sustainable agriculture: exploring arbuscular mycorrhizal fungi. Applied Microbiology and Biotechnology 101 (12): 4871-4881. https://doi.org/10.1007/s00253-017-8344-z
Jakobsen, I., Abbott, L. K. & Robson, A. D. (1992). External hyphae of vesicular?arbuscular mycorrhizal fungi associated with Trifolium subterraneum L. New Phytologist 120 (3): 371-380. https://doi.org/10.1111/j.1469-8137.1992.tb01077.x
Jansa, J., Erb, A., Oberholzer, H., Šmilauer, P. & Egli, S. (2014). Soil and geography are more important determinants of indigenous arbuscular mycorrhizal communities than management practices in Swiss agricultural soils. Molecular Ecology 23 (8): 2118-2135. https://doi.org/10.1111/mec.12706
Jin, H., Germida, J. J. & Walley, F. L. (2013). Suppressive effects of seed-applied fungicides on arbuscular mycorrhizal fungi (AMF) differ with fungicide mode of action and AMF species. Applied Soil Ecology 72: 22-30. https://doi.org/10.1016/j.apsoil.2013.05.013
Johansen, A., Jakobsen, I. & Jensen, E. S. (1993). External hyphae of vesicular–arbuscular mycorrhizal fungi associated with Trifolium subterraneum L. New Phytologist 124 (1): 61-68. https://doi.org/10.1111/j.1469-8137.1993.tb03797.x
Johnson, D., Martin, F., Cairney, J. W. G. & Anderson, I. C. (2012). The importance of individuals: intraspecific diversity of mycorrhizal plants and fungi in ecosystems. New Phytologist 194 (3): 614-628. https://doi.org/10.1111/j.1469-8137.2012.04087.x
Kaur, S. & Suseela, V. (2020). Unraveling arbuscular Mycorrhiza-Induced changes in plant primary and secondary metabolome. Metabolites 10 (8): 335. https://doi.org/10.3390/metabo10080335
Kafle, A., Cope, K. R., Raths, R., Yakha, J. K., Subramanian, S., Bücking, H. & Garcia, K. (2019). Harnessing soil microbes to improve plant phosphate efficiency in cropping systems. Agronomy 9 (3): 127. https://doi.org/10.3390/agronomy9030127
Kaiser, C., Kilburn, M. R., Clode, P. L., Fuchslueger, L., Koranda, M., Cliff, J. B., Solaiman, Z. M. & Murphy, D. V. (2014). Exploring the transfer of recent plant photosynthates to soil microbes: mycorrhizal pathway vs direct root exudation. New Phytologist 205 (4): 1537-1551. https://doi.org/10.1111/nph.13138
Kenrick, P. & Strullu-Derrien, C. (2014). The origin and early evolution of roots. Plant Physiology 166 (2): 570-580. https://doi.org/10.1104/pp.114.244517
Kinge, T. R., Ghosh, S., Cason, E. D. & Gryzenhout, M. (2022). Characterization of the Endophytic Mycobiome in Cowpea (Vigna unguiculata) from a Single Location Using Illumina Sequencing. Agriculture 12 (3): 333. https://doi.org/10.3390/agriculture12030333
Kirkegaard, J. & Sarwar, M. (1998). Biofumigation potential of brassicas. Plant and Soil 201 (1): 71-89. https://doi.org/10.1023/a:1004364713152
Kour, D., Rana, K. L., Yadav, A. N., Yadav, N., Kumar, M., Kumar, V., Vyas, P., Dhaliwal, H. S. & Saxena, A. K. (2020). Microbial biofertilizers: Bioresources and eco-friendly technologies for agricultural and environmental sustainability. Biocatalysis and Agricultural Biotechnology 23: 101487. https://doi.org/10.1016/j.bcab.2019.101487
Kumar, A., Singh, R. & Adholeya, A. (2017). Biotechnological advancements in industrial production of arbuscular mycorrhizal fungi: achievements, challenges, and future prospects. In: Satyanarayana, T., Deshmukh, S. and Johri, B. (Eds.), Developments in Fungal Biology and Applied Mycology. Singapore, Springer, (pp. 413–431). https://doi.org/10.1007/978-981-10-4768-8_21
Kuyper, T. W. & Jansa, J. (2023). Arbuscular mycorrhiza: advances and retreats in our understanding of the ecological functioning of the mother of all root symbioses. Plant and Soil 489 (1-2): 41-88. https://doi.org/10.1007/s11104-023-06045-z
Laxa, M., Liebthal, M., Telman, W., Chibani, K. & Dietz, K. J. (2019). The role of the plant antioxidant system in drought tolerance. Antioxidants 8 (4): 94. https://doi.org/10.3390/antiox8040094
Lehmann, J., Hansel, C. M., Kaiser, C., Kleber, M., Maher, K., Manzoni, S., Nunan, N., Reichstein, M., Schimel, J. P., Torn, M. S., Wieder, W. R. & Kögel-Knabner, I. (2020). Persistence of soil organic carbon caused by functional complexity. Nature Geoscience 13 (8): 529-534. https://doi.org/10.1038/s41561-020-0612-3
Leifheit, E. F., Veresoglou, S. D., Lehmann, A., Morris, E. K. & Rillig, M. C. (2014). Multiple factors influence the role of arbuscular mycorrhizal fungi in soil aggregation—a meta-analysis. Plant and Soil 374 (1-2): 523-537. https://doi.org/10.1007/s11104-013-1899-2
Lindahl, B. D., Ihrmark, K., Boberg, J., Trumbore, S. E., Högberg, P., Stenlid, J. & Finlay, R. D. (2007). Spatial separation of litter decomposition and mycorrhizal nitrogen uptake in a boreal forest. New Phytologist 173 (3): 611-620. https://doi.org/10.1111/j.1469-8137.2006.01936.x
Linderman, R. G. & Davis, E. A. (2001). Comparative Response of Selected Grapevine Rootstocks and Cultivars to Inoculation with Different Mycorrhizal Fungi. American Journal of Enology and Viticulture 52 (1): 8-11. https://doi.org/10.5344/ajev.2001.52.1.8
López-Ráez, J. A., Pozo, M. J. & García-Garrido, J. M. (2011). Strigolactones: a cry for help in the rhizosphere. Botany 89 (8): 513-522. https://doi.org/10.1139/b11-046
López-Ráez, J. A., Shirasu, K. & Foo, E. (2017). Strigolactones in Plant Interactions with Beneficial and Detrimental Organisms: The Yin and Yang. Trends in Plant Science 22 (6): 527-537. https://doi.org/10.1016/j.tplants.2017.03.011
Luginbuehl, L. H., Menard, G. N., Kurup, S., Van Erp, H., Radhakrishnan, G. V., Breakspear, A., Oldroyd, G. E. D. & Eastmond, P. J. (2017). Fatty acids in arbuscular mycorrhizal fungi are synthesized by the host plant. Science 356 (6343): 1175-1178. https://doi.org/10.1126/science.aan0081
Madawala, H. M. S. P. (2021). Arbuscular mycorrhizal fungi as biofertilizers: Current trends, challenges, and future prospects. In: Rakshit, A., Meena, V.S., Parihar, M., Singh, H.B. and Singh, A.K (Eds.), Biofertilizers: Advances in Bio-Inoculants. Cambridge, Woodhead Publishing (pp. 83–93). https://doi.org/10.1016/b978-0-12-821667-5.00029-4
Martín-Rodríguez, J. A., Huertas, R., Ho-Plágaro, T., Ocampo, J. A., Ture?ková, V., Tarkowská, D., Ludwig-Müller, J. & García-Garrido, J. M. (2016). Gibberellin–Abscisic Acid Balances during Arbuscular Mycorrhiza Formation in Tomato. Frontiers in Plant Science 7. https://doi.org/10.3389/fpls.2016.01273
Miransari, M. (2011). Hyperaccumulators, arbuscular mycorrhizal fungi and stress of heavy metals. Biotechnology Advances 29 (6): 645-653. https://doi.org/10.1016/j.biotechadv.2011.04.006
Miransari, M., Bahrami, H., Rejali, F. & Malakouti, M. (2009). Effects of arbuscular mycorrhiza, soil sterilization, and soil compaction on wheat (Triticum aestivum L.) nutrients uptake. Soil and Tillage Research 104 (1): 48-55. https://doi.org/10.1016/j.still.2008.11.006
Mukhongo, R. W., Tumuhairwe, J. B., Ebanyat, P., AbdelGadir, A. A. H., Thuita, M. N., & Masso, C. (2016). Production and use of arbuscular mycorrhizal fungi inoculum in Sub-Saharan Africa: Challenges and ways of improving. International Journal of Soil Science 11 (3): 108-122. https://doi.org/10.3923/ijss.2016.108.122
Nadeem, S. M., Ahmad, M., Zahir, Z. A., Javaid, A. & Ashraf, M. (2014). The role of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environments. Biotechnology Advances 32 (2): 429-448. https://doi.org/10.1016/j.biotechadv.2013.12.005
Naik, K., Mishra, S., Srichandan, H., Singh, P. K. & Choudhary, A. (2020). Microbial formulation and growth of cereals, pulses, oilseeds and vegetable crops. Sustainable Environment Research 30 (1). https://doi.org/10.1186/s42834-020-00051-x
Neumann, E. & George, E. (2010). Nutrient uptake: The arbuscular mycorrhiza fungal symbiosis as a plant nutrient acquisition strategy. In: Koltai, H., Kapulnik, Y. (Eds.), Arbuscular Mycorrhizas: Physiology and Function. Dordrecht, Springer, (pp. 137–167). https://doi.org/10.1007/978-90-481-9489-6_7
Nguvo, K. J. & Gao, X. (2019). Weapons hidden underneath: bio-control agents and their potentials to activate plant induced systemic resistance in controlling crop Fusarium diseases. Journal of Plant Diseases and Protection 126 (3): 177-190. https://doi.org/10.1007/s41348-019-00222-y
Njeru, E. M., Avio, L., Bocci, G., Sbrana, C., Turrini, A., Bàrberi, P., Giovannetti, M. & Oehl, F. (2015). Contrasting effects of cover crops on ‘hot spot’ arbuscular mycorrhizal fungal communities in organic tomato. Biology and Fertility of Soils 51 (2): 151-166. https://doi.org/10.1007/s00374-014-0958-z
Nosheen, S., Ajmal, I. & Song, Y. (2021). Microbes as biofertilizers, a potential approach for sustainable crop production. Sustainability 13 (4): 1868. https://doi.org/10.3390/su13041868
Nziguheba, G. & Smolders, E. (2008). Inputs of trace elements in agricultural soils via phosphate fertilizers in European countries. The Science of the Total Environment 390 (1): 53-57. https://doi.org/10.1016/j.scitotenv.2007.09.031
Ouledali, S., Ennajeh, M., Ferrandino, A., Khemira, H., Schubert, A. & Secchi, F. (2019). Influence of arbuscular mycorrhizal fungi inoculation on the control of stomata functioning by abscisic acid (ABA) in drought-stressed olive plants. South African Journal of Botany 121: 152-158. https://doi.org/10.1016/j.sajb.2018.10.024
Paszkowski, U., Kroken, S., Roux, C. & Briggs, S. P. (2002). Rice phosphate transporters include an evolutionarily divergent gene specifically activated in arbuscular mycorrhizal symbiosis. Proceedings of the National Academy of Sciences 99 (20): 13324-13329. https://doi.org/10.1073/pnas.202474599
Patanita, M., Campos, M. D., Félix, M. D. R., Carvalho, M. & Brito, I. (2020). Effect of Tillage System and Cover Crop on Maize Mycorrhization and Presence of Magnaporthiopsis maydis. Biology 9 (3): 46. https://doi.org/10.3390/biology9030046
Pellegrino, E., Gamper, H. A., Ciccolini, V. & Ercoli, L. (2020). Forage rotations conserve diversity of arbuscular mycorrhizal fungi and soil fertility. Frontiers in Microbiology 10. https://doi.org/10.3389/fmicb.2019.02969
Powell, J. R. & Rillig, M. C. (2018). Biodiversity of arbuscular mycorrhizal fungi and ecosystem function. New Phytologist 220 (4): 1059-1075. https://doi.org/10.1111/nph.15119
Qin, Z., Tian, Y., Hao, W., Zhang, J., Feng, G., Christie, P. & Gai, J. (2024). Identifying the predictors of mycorrhizal response under multiple fertilization regimes. Agriculture Ecosystems & Environment 365: 108926. https://doi.org/10.1016/j.agee.2024.108926
Rausch, C., Daram, P., Brunner, S., Jansa, J., Laloi, M., Leggewie, G., Amrhein, N. & Bucher, M. (2001). A phosphate transporter expressed in arbuscule-containing cells in potato. Nature 414 (6862): 462-465. https://doi.org/10.1038/35106601
Redecker, D., Schüßler, A., Stockinger, H., Stürmer, S. L., Morton, J. B. & Walker, C. (2013). An evidence-based consensus for the classification of arbuscular mycorrhizal fungi (Glomeromycota). Mycorrhiza 23 (7): 515-531. https://doi.org/10.1007/s00572-013-0486-y
Rivero, J., Gamir, J., Aroca, R., Pozo, M. J. & Flors, V. (2015). Metabolic transition in mycorrhizal tomato roots. Frontiers in Microbiology 6. https://doi.org/10.3389/fmicb.2015.00598
Rouphael, Y., Franken, P., Schneider, C., Schwarz, D., Giovannetti, M., Agnolucci, M., De Pascale, S., Bonini, P. & Colla, G. (2015). Arbuscular mycorrhizal fungi act as biostimulants in horticultural crops. Scientia Horticulturae 196: 91-108. https://doi.org/10.1016/j.scienta.2015.09.002
Sabia, E., Claps, S., Morone, G., Bruno, A., Sepe, L. & Aleandri, R. (2015). Field inoculation of arbuscular mycorrhiza on maize (Zea mays L.) under low inputs: preliminary study on quantitative and qualitative aspects. Italian Journal of Agronomy 10 (1): 30-33. https://doi.org/10.4081/ija.2015.607
Sagar, A., Rathore, P., Ramteke, P. W., Ramakrishna, W., Reddy, M. S. & Pecoraro, L. (2021). Plant growth promoting rhizobacteria, arbuscular mycorrhizal fungi and their synergistic interactions to counteract the negative effects of saline soil on agriculture: key macromolecules and mechanisms. Microorganisms 9 (7): 1491. https://doi.org/10.3390/microorganisms9071491
Säle, V., Aguilera, P., Laczko, E., Mäder, P., Berner, A., Zihlmann, U., Van Der Heijden, M. G. & Oehl, F. (2015). Impact of conservation tillage and organic farming on the diversity of arbuscular mycorrhizal fungi. Soil Biology and Biochemistry 84: 38-52. https://doi.org/10.1016/j.soilbio.2015.02.005
Samantaray, A., Chattaraj, S., Mitra, D., Ganguly, A., Kumar, R., Gaur, A., Mohapatra, P. K., De Los Santos-Villalobos, S., Rani, A. & Thatoi, H. (2024). Advances in microbial based bio-inoculum for amelioration of soil health and sustainable crop production. Current Research in Microbial Sciences 7: 100251. https://doi.org/10.1016/j.crmicr.2024.100251
Sanmartín, N., Sánchez-Bel, P., Pastor, V., Pastor-Fernández, J., Mateu, D., Pozo, M. J., Cerezo, M. & Flors, V. (2020). Root-to-shoot signalling in mycorrhizal tomato plants upon Botrytis cinerea infection. Plant Science 298: 110595. https://doi.org/10.1016/j.plantsci.2020.110595
Santander, C., Aroca, R., Cartes, P., Vidal, G. & Cornejo, P. (2021). Aquaporins and cation transporters are differentially regulated by two arbuscular mycorrhizal fungi strains in lettuce cultivars growing under salinity conditions. Plant Physiology and Biochemistry 158: 396-409. https://doi.org/10.1016/j.plaphy.2020.11.025
Sawers, R. J. H., Svane, S. F., Quan, C., Grønlund, M., Wozniak, B., Gebreselassie, M., González?Muñoz, E., Montes, R. a. C., Baxter, I., Goudet, J., Jakobsen, I. & Paszkowski, U. (2017). Phosphorus acquisition efficiency in arbuscular mycorrhizal maize is correlated with the abundance of root?external hyphae and the accumulation of transcripts encoding PHT1 phosphate transporters. New Phytologist 214 (2): 632-643. https://doi.org/10.1111/nph.14403
Schliemann, W., Ammer, C. & Strack, D. (2008). Metabolite profiling of mycorrhizal roots of Medicago truncatula. Phytochemistry 69 (1): 112-146. https://doi.org/10.1016/j.phytochem.2007.06.032
Shahwar, D., Mushtaq, Z., Mushtaq, H., Alqarawi, A. A., Park, Y., Alshahrani, T. S. & Faizan, S. (2023). Role of microbial inoculants as bio fertilizers for improving crop productivity: A review. Heliyon 9 (6): e16134. https://doi.org/10.1016/j.heliyon.2023.e16134
Sharma, S., Prasad, R., Varma, A. & Sharma, A. K. (2017). Glycoprotein Associated with Funneliformis coronatum, Gigaspora margarita and Acaulospora scrobiculata Suppress the Plant Pathogens In vitro. Asian Journal of Plant Pathology 11 (4): 199-202. https://doi.org/10.3923/ajppaj.2017.199.202
Smith, S. E. & Smith, F. A. (2011). Roles of Arbuscular Mycorrhizas in Plant Nutrition and Growth: New Paradigms from Cellular to Ecosystem Scales. Annual Review of Plant Biology 62 (1): 227-250. https://doi.org/10.1146/annurev-arplant-042110-103846
Song, Y., Chen, D., Lu, K., Sun, Z. & Zeng, R. (2015). Enhanced tomato disease resistance primed by arbuscular mycorrhizal fungus. Frontiers in Plant Science 6. https://doi.org/10.3389/fpls.2015.00786
Spatafora, J. W., Chang, Y., Benny, G. L., Lazarus, K., Smith, M. E., Berbee, M. L., Bonito, G., Corradi, N., Grigoriev, I., Gryganskyi, A., James, T. Y., O’Donnell, K., Roberson, R. W., Taylor, T. N., Uehling, J., Vilgalys, R., White, M. M. & Stajich, J. E. (2016). A phylum-level phylogenetic classification of zygomycete fungi based on genome-scale data. Mycologia 108 (5): 1028-1046. https://doi.org/10.3852/16-042
Stephenson, J., Crane, S. F., Levy, C. & Maslin, M. (2013). Population, development, and climate change: links and effects on human health. The Lancet 382 (9905): 1665-1673. https://doi.org/10.1016/s0140-6736(13)61460-9
Thompson, J. P., Clewett, T. G. & Fiske, M. L. (2013). Field inoculation with arbuscular-mycorrhizal fungi overcomes phosphorus and zinc deficiencies of linseed (Linum usitatissimum) in a vertisol subject to long-fallow disorder. Plant and Soil 371 (1-2): 117-137. https://doi.org/10.1007/s11104-013-1679-z
Tiamtanong, S., Sinma, K., Mala, T., Rungcharoenthong, P. & Amkha, S. (2015). Effects of Mycorrhizal Fungi with Phosphate Fertilizer Applications on Phosphate Solubilizing and Soil Properties of Grapes Orchard. Modern Applied Science 9 (1). https://doi.org/10.5539/mas.v9n1p149
Van Der Heijden, M. G. A., Martin, F. M., Selosse, M. & Sanders, I. R. (2015). Mycorrhizal ecology and evolution: the past, the present, and the future. New Phytologist 205 (4): 1406-1423. https://doi.org/10.1111/nph.13288
Verbruggen, E., Van Der Heijden, M. G. A., Weedon, J. T., Kowalchuk, G. A. & Röling, W. F. M. (2012). Community assembly, species richness and nestedness of arbuscular mycorrhizal fungi in agricultural soils. Molecular Ecology 21 (10): 2341-2353. https://doi.org/10.1111/j.1365-294x.2012.05534.x
Vierheilig, H., Steinkellner, S., Khaosaad, T. & Garcia-Garrido, J. M. (2008). The biocontrol effect of mycorrhization on soilborne fungal pathogens and the autoregulation of the AM symbiosis: one mechanism, two effects? In Mycorrhiza (pp. 307–320). https://doi.org/10.1007/978-3-540-78826-3_15
Vyas, S. C. & Vyas, S. (2000). Effect of agrochemicals on mycorrhizae. In: Mukerji, K.G., Chamola, B.P. and Singh, J (Eds.), Mycorrhizal Biology. Boston, Springer, (pp. 289–327). https://doi.org/10.1007/978-1-4615-4265-0_18
Wahid, F., Sharif, M., Fahad, S., Ali, A., Adnan, M., Rafiullah, N., Saud, S., Danish, S., Ali, M. A., Ahmed, N., Arslan, H., Arslan, D., Erman, M., Sabagh, A. E., Gholizadeh, F. & Datta, R. (2022). Mycorrhiza and phosphate solubilizing bacteria: Potential bioagents for sustainable phosphorus management in agriculture. Phyton 91 (2): 257-278. https://doi.org/10.32604/phyton.2022.016512
Walder, F., Niemann, H., Natarajan, M., Lehmann, M. F., Boller, T. & Wiemken, A. (2012). Mycorrhizal Networks: Common Goods of Plants Shared under Unequal Terms of Trade. Plant Physiology 159 (2): 789-797. https://doi.org/10.1104/pp.112.195727
Wang, W., Shi, J., Xie, Q., Jiang, Y., Yu, N. & Wang, E. (2017). Nutrient exchange and regulation in arbuscular mycorrhizal symbiosis. Molecular Plant 10 (9): 1147-1158. https://doi.org/10.1016/j.molp.2017.07.012
Wang, Y., Wang, M., Li, Y., Wu, A. & Huang, J. (2018). Effects of arbuscular mycorrhizal fungi on growth and nitrogen uptake of Chrysanthemum morifolium under salt stress. PLoS ONE 13 (4): e0196408. https://doi.org/10.1371/journal.pone.0196408
Waters, M. T., Gutjahr, C., Bennett, T. & Nelson, D. C. (2017). Strigolactone Signaling and Evolution. Annual Review of Plant Biology 68 (1): 291-322. https://doi.org/10.1146/annurev-arplant-042916-040925
Yadav, R., Ror, P., Rathore, P., Kumar, S. & Ramakrishna, W. (2021). Bacillus subtilis CP4, isolated from native soil in combination with arbuscular mycorrhizal fungi promotes biofortification, yield and metabolite production in wheat under field conditions. Journal of Applied Microbiology 131 (1): 339-359. https://doi.org/10.1111/jam.14951
Yooyongwech, S., Phaukinsang, N., Cha-Um, S. & Supaibulwatana, K. (2013). Arbuscular mycorrhiza improved growth performance in Macadamia tetraphylla L. grown under water deficit stress involves soluble sugar and proline accumulation. Plant Growth Regulation 69 (3): 285-293. https://doi.org/10.1007/s10725-012-9771-6
Yu, L., Zhang, W., Geng, Y., Liu, K. & Shao, X. (2022). Cooperation with arbuscular mycorrhizal fungi increases plant nutrient uptake and improves defenses against insects. Frontiers in Ecology and Evolution 10. https://doi.org/10.3389/fevo.2022.833389
Zeng, L., Jian-fu, L., Jian-fu, L. & Ming-yuan, W. (2014). Effects of arbuscular mycorrhizal (AM) fungi on citrus quality under nature conditions. Southwest China Journal of Agricultural Sciences 27 (5): 2101-2105. https://doi.org/10.16213/j.cnki.scjas.2014.05.067
Zhang, J., Zhao, R., Li, X. & Zhang, J. (2024). Potential of arbuscular mycorrhizal fungi for soil health: A review. Pedosphere 34 (2): 279-288. https://doi.org/10.1016/j.pedsph.2024.02.002
Zhang, X., Dong, W., Sun, J., Feng, F., Deng, Y., He, Z., Oldroyd, G. E. & Wang, E. (2015). The receptor kinase CERK1 has dual functions in symbiosis and immunity signalling. The Plant Journal 81 (2): 258-267. https://doi.org/10.1111/tpj.12723

Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Lilloa

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.