Optimization of a bioactive compound extraction procedure and micrographic analysis of inflorescences from two medicinal Cannabis strains cultivated in Tucumán (Argentina)

Authors

DOI:

https://doi.org/10.30550/j.lil/1987

Keywords:

Medicinal Cannabis, extracts, resins, cannabinoids, phenolic compounds

Abstract

Cannabis sativa L. is a rich species in several special or secondary metabolites, among them cannabinoids,  terpenes, and phenolic compounds stand out, recognized for their synergistic contributions to the aroma, flavor, and therapeutic properties of the plant. Cannabinoids are the best-known metabolites of  cannabis, with more than 100 identified thus far. These compounds interact with the endocannabinoid  system of the human body to produce various physiological effects, being together with phenols and terpenes the main Pharmacologically Active  ingredients (PAI) of Cannabis-based plant products for use and application in human medicine. The quantity, quality, oxidation state, and therapeutic properties of PAI can vary widely depending on the strain used, the cultivation method, the harvesting process, the curing of the herbal material, and the extraction technique used, among others. In this  context, obtaining standardized Cannabis-based products is important to achieve quality medical drugs that offer safety and efficacy. The aim of this  research was to characterize the morpho-anatomy of  the inflorescences (without leaves) of two strains of Cannabis grown for medicinal purposes in the province of Tucumán, optimize extraction techniques  to obtain standardized extracts in phenolic and terpene-phenolic compounds, and  evaluate their antioxidant capacity. For this purpose,  inflorescences of two Cannabis strains, INBIO-1 and 2, grown under controlled conditions in Tucumán  province, were selected. They were characterized  macro- and microscopically employing conventional histological techniques. Part of the material was dried  in an oven and fragmented, to then proceed to  optimize the extraction of the PAIs. Extractions were  tested using 96° ethanol at two temperatures (5 and  40 °C) and three different ratios of plant material (pM)  to solvent (S) (1/10, 1/20, and 1/40). It was demonstrated that the plant material/solvent pM/S ratio, temperature, and strain used determine the qualitative and quantitative profile of the extracted metabolites and their antioxidant activity. The extracts obtained from local Cannabis strains were standardized with a conventional methodology, selecting the conditions for the most  efficient extraction of bioactive compounds. 

Downloads

Download data is not yet available.

Author Biography

Florencia Cattaneo, Instituto de Bioprospección y Fisiologia Vegetal (CONICET-UNT)

Dra Florencia Cattaneo is a researcher at CONICET and an undergraduate and postgraduate teacher at the Faculty of Natural Sciences and IML. She has published several works on the chemistry and biological activity of natural products obtained from medicinal and food plants in refereed international journals.  She is also the author of book chapters related to bioactivities of medicinal and food products.

References

Ahmed, M., Ji, M., Qin, P., Gu, Z., Liu, Y., Sikandar, A. y Javeed, A. (2019). Phytochemical screening, total phenolic and flavonoids contents and antioxidant activities of Citrullus colocynthis L. and Cannabis sativa L. Applied Ecology and Environmental Research 17 (3): 6961-6979.

Almeida, A. D. R., Maciel, M. V. D. O. B., Machado, M. H., Bazzo, G. C., de Armas, R. D., Vitorino, V. B. y Barreto, P. L. M. (2020). Bioactive compounds and antioxidant activities of Brazilian hop (Humulus lupulus L.) extracts. International Journal of Food Science & Technology 55 (1): 340-347.

Al Ubeed, H. M. S., Bhuyan, D. J., Alsherbiny, M. A., Basu, A. y Vuong, Q. V. (2022). A comprehensive review on the techniques for extraction of bioactive compounds from medicinal Cannabis. Molecules 27 (3): 604.

André, C. M., Hausman, J. F. y Guerriero, G. (2016). Cannabis sativa: the plant of the thousand and one molecules. Frontiers in plant science 7: 174167.

André, A., Leupin, M., Kneubühl, M., Pedan, V. y Chetschik, I. (2020). Evolution of the polyphenol and terpene content, antioxidant activity and plant morphology of eight different fiber-type cultivars of Cannabis sativa L. cultivated at three sowing densities. Plants 9 (12): 1740. https://doi.org/10.3390/plants9121740

Arbo, M., Gonzalez, M., Ocanto, N., Cáceres, A., Popoff, O., Rojas, J., …y Sosa, M. (2019). Morfología de plantas vasculares (M. Arbo & S. Ferrucci, Eds.). Chaco-Corrientes- Argentina: Facultad de Ciencias Agrarias. Universidad Nacional del Nordeste.

Biteznik, L., Dermastia, M. y Trdan, S. (2023). Secondary metabolites of hemp (Cannabis sativa L.) and their role in defence against pests and pathogens. Acta Biologica Slovenica 66 (1): 78.

Cantele, C., Bertolino, M., Bakro, F., Giordano, M., J?dryczka, M. y Cardenia, V. (2020). Antioxidant effects of hemp (Cannabis sativa L.) inflorescence extract in stripped linseed oil. Antioxidants 9 (11): 1131.

Cerino, P., Buonerba, C., Cannazza, G., D'Auria, J., Ottoni, E., Fulgione, A., . y Gallo, A. (2021). A review of hemp as food and nutritional supplement. Cannabis and cannabinoid research 6 (1): 19-27.

Citti, C., Russo, F., Sgrò, S., Gallo, A., Zanotto, A., Forni, F. y Cannazza, G. (2020). Pitfalls in the analysis of phytocannabinoids in Cannabis inflorescence. Analytical and Bioanalytical Chemistry 412 (17): 4009-4022.

D’Ambrogio de Argüeso, A. (1986). Manual de Técnicas de Histología Vegetal. Hemisferio Sur, Buenos Aires, Argentina.

De Prato, L., Ansari, O., Hardy, G. E. S. J., Howieson, J., O'Hara, G. y Ruthrof, K. X. (2022). The cannabinoid profile and growth of hemp (Cannabis sativa L.) is influenced by tropical daylengths and temperatures, genotype and nitrogen nutrition. Industrial Crops and Products 178: 114605. https://doi.org/10.1016/j.indcrop.2022.114605

Di Rienzo, J., Balzarini, M., Gonzalez, L., Casanoves, F., Tablada, M. y Walter Robledo, C. (2010). Infostat: software para análisis estadístico. https://repositorio.catie.ac.cr/handle/11554/10346

Flajšman, M. y A?ko, D. K. (2020). Influence of edaphoclimatic conditions on stem production and stem morphological characteristics of 10 European hemp (Cannabis sativa L.) varieties. Acta agriculturae Slovenica 115 (2): 399-407. http://ojs.aas.bf.uni-lj.si/index.php/AAS/article/view/1528/405

Flores-Sanchez, I. J. y Verpoorte, R. (2008). Secondary metabolism in Cannabis. Phytochemistry reviews 7 (3): 615-639.

Fordjour, E., Manful, C. F., Sey, A. A., Javed, R., Pham, T. H., Thomas, R. y Cheema, M. (2023). Cannabis: a multifaceted plant with endless potentials. Frontiers in Pharmacology 14: 1200269.

Hacke, A. C. M., Lima, D., de Costa, F., Deshmukh, K., Li, N., Chow, A. M., ... y Kerman, K. (2019). Probing the antioxidant activity of ? 9-tetrahydrocannabinol and cannabidiol in Cannabis sativa extracts. Analyst 144 (16): 4952-4961. https://doi.org/10.1039/c9an00890j

Hancock, J., Livingston, S. J. y Samuels, L. (2024). Building a biofactory: Constructing glandular trichomes in Cannabis sativa. Current Opinion in Plant Biology 80: 102549. https://doi.org/10.1016/j.pbi.2024.102549

Hazekamp, A. y Fischedick, J. T. (2012). Cannabis?from cultivar to chemovar. Drug testing and analysis 4 (7-8): 660-667.

Jin, D., Dai, K., Xie, Z. y Chen, J. (2020). Secondary metabolites profiled in Cannabis inflorescences, leaves, stem barks, and roots for medicinal purposes. Scientific Reports 10 (1): 1-14.

Kobus, Z., Pecyna, A., Buczaj, A., Krzywicka, M., Przywara, A. y Nadulski, R. (2022). Optimization of the Ultrasound-Assisted Extraction of Bioactive Compounds from Cannabis sativa L. Leaves and Inflorescences Using Response Surface Methodology. Applied Sciences 12 (13): 6747.

Lapierre, É., Monthony, A. S. y Torkamaneh, D. (2023). Genomics-based taxonomy to clarify Cannabis classification. Genome 66 (8): 202-211. https://doi.org/10.1139/gen-2023-0005

Leme, F. M., Schönenberger, J., Staedler, Y. M. y Teixeira, S. P. (2020a). Comparative floral development reveals novel aspects of structure and diversity of flowers in Cannabaceae. Botanical Journal of the Linnean Society 193 (1): 64-83.

Leme, F. M., Borella, P. H., Marinho, C. R. y Teixeira, S. P. (2020b). Expanding the laticifer knowledge in Cannabaceae: distribution, morphology, origin, and latex composition. Protoplasma 257: 1183-1199. https://doi.org/10.1007/s00709-020-01500-5

Livingston, S. J., Quilichini, T. D., Booth, J. K., Wong, D. C., Rensing, K. H., Laflamme?Yonkman, J., ... y Samuels, A. L. (2020). Cannabis glandular trichomes alter morphology and metabolite content during flower maturation. The Plant Journal 101 (1): 37-56. https://doi.org/10.1111/tpj.14516

Martínez, A. S., Lanaridi, O., Stagel, K., Halbwirth, H., Schnürch, M. y Bica-Schröder, K. (2023). Extraction techniques for bioactive compounds of Cannabis. Natural Product Reports 40 (3): 676-717.

McPartland, J. M. (2018). Cannabis systematics at the levels of family, genus, and species. Cannabis and Cannabinoid Research 3 (1): 203-212.

McPartland, J. M. y Russo, E. B. (2001). Cannabis and Cannabis extracts: greater than the sum of their parts?. Journal of Cannabis Therapeutics 1 (3-4): 103-132.

McPartland, J. M. y Small, E. (2020). A Classification of Endangered High-THC Cannabis (Cannabis sativa subsp. indica) Domesticates and Their Wild Relatives. PhytoKeys 144: 81-112. https://doi.org/10.3897/phytokeys.144.46700

Moher, M., Llewellyn, D., Jones, M. y Zheng, Y. (2022). Light intensity can be used to modify the growth and morphological characteristics of Cannabis during the vegetative stage of indoor production. Industrial Crops and Products 183: 114909. https://doi.org/10.1016/j.indcrop.2022.114909

Pacifico, D., Miselli, F., Carboni, A., Moschella, A. y Mandolino, G. (2008). Time course of cannabinoid accumulation and chemotype development during the growth of Cannabis sativa L. Euphytica 160: 231-240.

Pattnaik, F., Nanda, S., Mohanty, S., Dalai, A. K., Kumar, V., Ponnusamy, S. K. y Naik, S. (2022). Cannabis: Chemistry, extraction and therapeutic applications. Chemosphere 289: 133012.

Raman, V., Lata, H., Chandra, S., Khan, I. A. y El Sohly, M. A. (2017). Morpho-anatomy of marijuana (Cannabis sativa L.). In Cannabis sativa L. Botany and Biotechnology: 123-136.

Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M. y Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine 26 (9-10): 1231-1237.

Reed, J. (1914). Morphology of Cannabis sativa L. (Doctoral dissertation, State University of Iowa).

Saloner, A. y Bernstein, N. (2021). Nitrogen supply affects cannabinoid and terpenoid profile in medical Cannabis (Cannabis sativa L.). Industrial Crops and Products 167: 113516. https://doi.org/10.1016/j.indcrop.2021.113516

Sedan, D., Vaccarini, C., Demetrio, P., Morante, M., Montiel, R., Sauri, A. y Andrinolo, D. (2023). Cannabinoid content in Cannabis flowers and homemade Cannabis-based products used for therapeutic purposes in Argentina. Cannabis and Cannabinoid Research 8 (1): 197-206.

Singleton, V. L., Orthofer, R. y Lamuela-Raventós, R. M. (1999). Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods in Enzymology 299: 152-178.

Spano, M., Di Matteo, G., Ingallina, C., Botta, B., Quaglio, D., Ghirga, F., ... y Sobolev, A. P. (2021). A multimethodological characterization of Cannabis sativa L. inflorescences from seven dioecious cultivars grown in Italy: The effect of different harvesting stages. Molecules 26 (10): 2912.

Spitzer-Rimon, B., Duchin, S., Bernstein, N. y Kamenetsky, R. (2019). Architecture and florogenesis in female Cannabis sativa plants. Frontiers in plant science 10: 350.

Trancoso, I., de Souza, G. A., dos Santos, P.R., dos Santos, K. D., de Miranda, R. M. D. S. N., da Silva, A. L. P. M., Zsolt Santos, D., Garcia Tejero, I. F. y Campostrini, E. (2022). Cannabis sativa L.: Crop management and abiotic factors that affect phytocannabinoid production. Agronomy 12 (7): 1492. htpps://doi.org/10.3390/agronomy12071492

Vaccarini, C., Mercado, M. I., Ponessa, G., Pinto Alman, L., Sedan, D. y Andrinolo, D. (2023). Caracterización histoquímica y morfoanatomica de hojas y flores femeninas de tres cepas argentinas terapéuticas de Cannabis. Cannabis y Salud 2: 66-75. https://heyzine.com/flip-book/9536cea987.html#page/67

Wagner, H. y Bladt, S. (1996). Plant drug analysis: a thin layer chromatography atlas. Springer Science & Business Media.

Woisky, R. G. y Salatino, A. (1998). Analysis of propolis: some parameters and procedures for chemical quality control. Journal of Apicultural Research 37 (2): 99-105.

Zagórska-Dziok, M., Bujak, T., Ziemlewska, A. y Nizio?-?ukaszewska, Z. (2021). Positive effect of Cannabis sativa L. herb extracts on skin cells and assessment of cannabinoid-based hydrogels properties. Molecules 26 (4): 802.

Zarlavsky, G. (2014). Histología Vegetal. Técnicas simples y complejas, Buenos Aires, Argentina.

Optimización de un procedimiento de extracción de compuestos bioactivos y análisis micrográficos de inflorescencias de dos cepas de Cannabis para uso medicinal cultivadas en Tucumán (Argentina)

Published

2024-11-04

How to Cite

Matteucci, E. A., Cattaneo, F., Zampini, I. C., Mercado, M. I., & Isla, M. I. (2024). Optimization of a bioactive compound extraction procedure and micrographic analysis of inflorescences from two medicinal Cannabis strains cultivated in Tucumán (Argentina). Lilloa, 61(2), 359–377. https://doi.org/10.30550/j.lil/1987

Issue

Section

Original papers