Impact of organic mulch and exposure to shallow groundwater levels on Cnidoscolus aconitifolius in a tropical wetland, South Sumatra, Indonesia

Authors

DOI:

https://doi.org/10.30550/j.lil/1971

Keywords:

Crop adaptation, groundwater table, perennial vegetable, organic mulch, swamp cultivation

Abstract

Agricultural land in Indonesia is decreasing due to its conversion for various non-agricultural interests, which are economically more profitable. The remaining land available for agricultural activities is a suboptimal wetland. The reduction in cultivable areas has led to the evaluation of alternative crops in suboptimal land conditions. Chaya (Cnidoscolus aconitifolius) is a fast-growing perennial plant, its leaves are edible and rich in vitamins, minerals, and dietary fiber. However, the chaya plant has not been intensively tested for its adaptation to shallow groundwater tables in tropical lowlands. This study aimed to assess chaya’s adaptability to shallow groundwater table conditions and the benefits of using organic mulch. This research consisted of two separate parts, one part was related to organic mulch benefits (planting media without watering, with organic mulch but not watered, and with organic mulch and watering), while the other one was related to shallow groundwater table tolerance. The study followed a randomized complete block design consisting of three replications. Results showed that chaya plants negatively responded to the shallow groundwater table conditions. Growth retardation due to shallow groundwater levels is reflected in the averages of leaf length, leaf width, leaf area, canopy diameter, and canopy area; fresh and dry weight of stem, petiole, and leaf blade; development of roots; SPAD value at 7 weeks after transplanting and it was based on visual appearance. However, despite the increase in substrate humidity due to the application of organic mulch, the effects were not significant on most of the measured morphological traits. In conclusion, chaya plants are not able to adapt to shallow groundwater levels and do not require organic mulch on the soil surface.

Downloads

Download data is not yet available.

References

Bhermana, A., Suparman, S., Tunisa, H. & Sunarminto, B. H. (2021). Identification of land resource potential for agricultural landscape planning using land capability evaluation approach and GIS application (a Case in Central Kalimantan Province, Indonesia). Journal of Suboptimal Lands 10 (2): 170-177. https://doi.org/10.36706/jlso.10.2.2021.549

Bogunović, I., Hrelja, I., Kisić, I., Dugan, I., Krevh, V., Defterdarović, J., Filipović, V., Filipović, L. & Pereira, P. (2023). Straw mulch effect on soil and water loss in different growth phases of maize sown on stagnosols in croatia. Land 12 (4): 765. https://doi.org/10.3390/land12040765

Busari, M. A., Bankole, G. O., Adiamo, I. A., Abiodun, R. O. & Ologunde, O. H. (2023). Influence of mulch and poultry manure application on soil temperature, evapotranspiration and water use efficiency of dry season cultivated okra. International Soil and Water Conservation Research 11 (2): 382-392. https://doi.org/10.1016/j.iswcr.2022.09.003

Dobrowolska-Iwanek, J., Zagrodzki, P., Galanty, A., Fo?ta, M., Kryczyk-Kozio?, J., Szlósarczyk, M., Rubio, P. S., de Carvalho, I. S. & Pa?ko, P. (2022). Determination of essential minerals and trace elements in edible sprouts from different botanical families—application of chemometric analysis. Foods 11 (3): 371. https://doi.org/10.3390/foods11030371

Domínguez-Niño, J. M., Oliver-Manera, J., Girona, J. & Casadesús, J. (2020). Differential irrigation scheduling by an automated algorithm of water balance tuned by capacitance-type soil moisture sensors. Agricultural Water Management 228: 105880. https://doi.org/10.1016/j.agwat.2019.105880

Ebel, R., de Jesús Méndez Aguilar, M., Castillo Cocom, J. A. & Kissmann, S. (2019). Genetic diversity in nutritious leafy green vegetable—chaya (Cnidoscolus aconitifolius). In: D. Nandwani, Bozeman (Eds.), Genetic Diversity in Horticultural Plants. USA (pp. 161-189). Switzerland: Springer Nature. https://doi.org/10.1007/978-3-319-96454-6_6

Fang, B., Kansara, P., Dandridge, C. & Lakshmi, V. (2021). Drought monitoring using high spatial resolution soil moisture data over Australia in 2015–2019. Journal of Hydrology 594: 125960.

Faridah, S. N., Mubarak, H., Jamaluddin, T. A. A. & Samsuar, S. (2023). Morphology and physiology of kale plants under excess and deficient water conditions. International Journal of Vegetable Science: 1-8. https://doi.org/10.1016/j.jhydrol.2021.125960

Fernandes, A., Mateus, N. & de Freitas, V. (2023). Polyphenol-Dietary fiber conjugates from fruits and vegetables: Nature and biological fate in a food and nutrition perspective. Foods 12 (5): 1052. https://doi.org/10.3390/foods12051052

Gavrilescu, M. (2021). Water, soil, and plants interactions in a threatened environment. Water 13 (19): 2746. https://doi.org/10.3390/w13192746

Gustiar, F., Lakitan, B., Budianta, D. & Negara, Z. P. (2023a). Assessing the impact on growth and yield in different varieties of chili pepper (Capsicum frutescens) intercropped with chaya (Cnidoscolus aconitifolius). Biodiversitas Journal of Biological Diversity 24 (5): 2639-2646. https://doi.org/10.13057/biodiv/d240516

Gustiar, F., Lakitan, B., Budianta, D., & Negara, Z. P. (2023b). Non-destructive model for estimating leaf area and growth of Cnidoscolus aconitifolius cultivated using different stem diameter of the semi hardwood cuttings. Agrivita Journal of Agricultural Science 45 (2): 188-198. http://doi.org/10.17503/agrivita.v45i2.3849

Kader, M. A., Singha, A., Begum, M. A., Jewel, A., Khan, F. H. & Khan, N. I. (2019). Mulching as water-saving technique in dryland agriculture. Bulletin of the National Research Center 43 (1): 1-6. https://doi.org/10.1186/s42269-019-0186-7

Khan, M. U., Gautam, G., Jan, B., Zahiruddin, S., Parveen, R. & Ahmad, S. (2022). Vitamin D from vegetable VV sources: hope for the future. Phytomedicine Plus 2 (2): 100248. https://doi.org/10.1016/j.phyplu.2022.100248

Lacroix, E. M., Rossi, R. J., Bossio, D. & Fendorf, S. (2021). Effects of moisture and physical disturbance on pore-scale oxygen content and anaerobic metabolisms in upland soils. Science of the Total Environment 780: 146572. https://doi.org/10.1016/j.scitotenv.2021.146572

León, J., Castillo, M. C. & Gayubas, B. (2021). The hypoxia–reoxygenation stress in plants. Journal of Experimental Botany 72 (16): 5841-5856. https://doi.org/10.1093/jxb/eraa591

Liao, Y., Cao, H. X., Liu, X., Li, H. T., Hu, Q. Y. & Xue, W. K. (2021). By increasing infiltration and reducing evaporation, mulching can improve the soil water environment and apple yield of orchards in semiarid areas. Agricultural Water Management 25: 106936. https://doi.org/10.1016/j.agwat.2021.106936

Munguía-Rosas, M. A. (2021). Artificial selection optimizes clonality in chaya (Cnidoscolus aconitifolius). Scientific Reports 11 (1): 21017. https://doi.org/10.1038/s41598-021-00592-0

Oleszczuk, R., Jadczyszyn, J., Gnatowski, T. & Brandyk, A. (2022). Variation of moisture and soil water retention in a lowland area of central Poland-solec site case study. Atmosphere 13 (9): 1372. https://doi.org/10.3390/atmos13091372

Pan, Y., Cieraad, E., Clarkson, B. R., Colmer, T. D., Pedersen, O., Visser, E. J., Voensenek, L. A. C. J. & van Bodegom, P. M. (2020). Drivers of plant traits that allow survival in wetlands. Functional Ecology 34 (5): 956-967. https://doi.org/10.1111/1365-2435.13541

Parkash, V. & Singh, S. (2020). A review on potential plant-based water stress indicators for vegetable crops. Sustainability 12 (10): 3945. https://doi.org/10.3390/su12103945

Pendergrass, A. G., Meehl, G. A., Pulwarty, R., Hobbins, M., Hoell, A., AghaKouchak, A., Bonfils, C. J. W., Gallant, A. J. E., Hoerling, M., Hoffmann, D., Kaatz, L., Lehner, F., Llewellyn, D., Mote, P., Neale, R. B., Overpeck, J. T., Sheffield, A., Stahl, K., Svoboda, M., Wheeler, M. C., Wood, A. W. & Woodhouse, C. A. (2020). Flash droughts present a new challenge for subseasonal-to-seasonal prediction. Nature Climate Change 10 (3): 191-199. https://doi.org/10.1038/s41558-020-0709-0

Plakantonaki, S., Roussis, I., Bilalis, D. & Priniotakis, G. (2023). Dietary fiber from plant-based food wastes: A comprehensive approach to cereal, fruit, and vegetable waste valorization. Processes 11 (5): 1580. https://doi.org/10.3390/pr11051580

Ramos, F. R. & Freire, A. L. O. (2019). Physiological responses to drought of Cnidoscolus quercifolius Pohl in semi-arid conditions. Advances in Forestry Science 6 (1): 493-499. https://doi.org/10.34062/afs.v6i1.5735

Sarker, U. & Oba, S. (2019). Protein, dietary fiber, minerals, antioxidant pigments and phytochemicals, and antioxidant activity in selected red morph Amaranthus leafy vegetable. PLoS One 14 (12): e0222517. https://doi.org/10.1371/journal.pone.0222517

Stefanakis, A. I. (2019). The role of constructed wetlands as green infrastructure for sustainable urban water management. Sustainability 11 (24): 6981. https://doi.org/10.3390/su11246981

Van Klompenburg, T., Kassahun, A. & Catal, C. (2020). Crop yield prediction using machine learning: A systematic literature review. Computers and Electronics in Agriculture 177: 105709. https://doi.org/10.1016/j.compag.2020.105709

Vazquez-Olivo, G., Cota-Pérez, J. L., García-Carrasco, M., Zamudio-Sosa, V. E. & Heredia, J. B. (2023). Antioxidant phenolics from vegetable by-products. In: R. Lone, S. Khan, A. Mohammed Al-Sadi (Eds.), Plant Phenolics in Abiotic Stress Management. (pp. 89-104). Singapore: Springer. https://doi.org/10.1007/978-981-19-6426-8_5

Wang, B., Niu, J., Berndtsson, R., Zhang, L., Chen, X., Li, X. & Zhu, Z. (2021). Efficient organic mulch thickness for soil and water conservation in urban areas. Scientific Reports 11 (1): 6259. https://doi.org/10.1038/s41598-021-85343-x

Weyh, C., Krüger, K., Peeling, P. & Castell, L. (2022). The role of minerals in the optimal functioning of the immune system. Nutrients 14 (3): 644. https://doi.org/10.3390/nu14030644

Zahra, N., Hafeez, M. B., Shaukat, K., Wahid, A., Hussain, S., Naseer, R., Raza, A., Iqbal, S. & Farooq, M. (2021). Hypoxia and anoxia stress: Plant responses and tolerance mechanisms. Journal of Agronomy and Crop Science 207 (2): 249-284. https://doi.org/10.1111/jac.12471

Zeng, Y., Zhou, W., Yu, J., Zhao, L., Wang, K., Hu, Z. & Liu, X. (2023). By-Products of fruit and vegetables: Antioxidant properties of extractable and non-extractable phenolic compounds. Antioxidants 12 (2): 418. https://doi.org/10.3390/antiox12020418

Zhang, Y., Yang, S., Wu, Q., Ye, Z., Zhou, C., Liu, M., Zhang, Z., He, P., Zhang, Y., Li, H., Li, R., Gan, X., Liu, C. & Qin, X. (2023). Dietary vitamin E intake and new-onset hypertension. Hypertension Research 46 (5): 1267-1275. https://doi.org/10.1038/s41440-022-01163-0

Zhou, H., Whalley, W. R., Hawkesford, M. J., Ashton, R. W., Atkinson, B., Atkinson, J. A., Sturrock, C. J., Bennett, M. J. & Mooney, S. J. (2021). The interaction between wheat roots and soil pores in structured field soil. Journal of Experimental Botany 72 (2): 747-756. https://doi.org/10.1093/jxb/eraa475

Impacto del mantillo orgánico y la exposición a niveles poco profundos de agua subterránea sobre Cnidoscolus aconitifolius en un humedal tropical, Sumatra del Sur, Indonesia

Downloads

Published

2024-10-14

How to Cite

Lakitan, B., Muda, S. A., Gustiar, F., Julyana, M., Jehonissi, L., Nurshanti, D. F. ., & Ria, R. P. (2024). Impact of organic mulch and exposure to shallow groundwater levels on Cnidoscolus aconitifolius in a tropical wetland, South Sumatra, Indonesia. Lilloa, 61(2), 297–316. https://doi.org/10.30550/j.lil/1971

Issue

Section

Original papers