Potential for White rot fungi in the treatment of pesticides for the development of biobeds

Bioremediation systems: biobeds

Authors

DOI:

https://doi.org/10.30550/j.lil/2022.59.S/2022.08.11

Keywords:

biobeds, biodegradation, mycoremediation, pesticides, Trametes villosa

Abstract

Pesticides have contributed to improve the productivity and quality of agricultural production however, but their inadequate use can pollute the environment. Biobeds are bioremediation systems used to prevent specific contamination with agrochemicals during the filling process of  fumigation equipment. In this work, a selection of strains of white rot fungi was made for the design of biomixtures with agricultural residues from the province of Córdoba. The enzymatic activity of the fungi was evaluated against four pesticides commonly used in the productive systems of the central region of Argentina. Trametes villosa CCC32 was the strain that showed the best enzymatic activity and was selected for the development of the biomixture. Laboratory scale biobeds were developed with the selected strain and sunflower husk as the lignocellulosic substrate. The enzymatic activity of phenoloxidases in the biobeds was determined. The bioassays with extracts of the biomixtures showed after 240 days of treatment a germination rate of 60%. The results obtained in the enzymatic measurements and the phytotoxic evaluation carried out in biobeds at laboratory scale are promising and suggest a great potential of biomixtures for the development of real scale biobeds.

Downloads

Download data is not yet available.

References

Bastos, A. y Magan, N. (2009). Trametes versicolor: potential for atrazina bioremediation in calcareous clay soil, under low water availability conditions. International Biodeterioratium and Biodegradation 63: 389-394.

Bray, B. y Kurtz, L. (1945). Determination of total organic an available forms of phosphorous in soils. Soil Science 59: 39-45.

Castillo, M. d. P. y Torstensson, L. (2007). Effect of biobed composition, moisture and temperature on the degradation of pesticides. Journal of Agricultural and Food Chemistry 55 (14): 5725-5733.

Castillo, M. d. P. y Torstensson, L. (2008). Biobeds - Biotechnology for environmental protection from pesticide pollution. In Methods and Techniques for Cleaning-up Contaminated Sites; Annable, M. D., Teodorescu, M., Hlavinek,

P., Diels, L., Eds. Springer 145-151. https://doi.org/10.1007/978-1-4020-6875-1_13

Castillo, M. d. P., Torstensson, L. y Stenström, J. (2011). Biobeds for environmental protection from pesticide use: A review. Journal of Agricultural and Food Chemistry 56: 6206 6219.

Cupul, W., Abarca, G., Vázquez, R., Salmones, D., Hernández, R. y Gutiérrez, E. (2014). Respuesta de macrofungos

ligninolíticos al herbicida atrazina: bioensayos dosis-respuesta. Revista Argentina de Microbiología 46: 348-357.

https://doi.org/10.1016/S0325 -7541(14) 70094-X

Díaz, J., Palma, G., Tortella, G., Rubilar, O. y Diez, M. C. (2012). Lecho Biológico: Eficaz sistema para la degradación de

residuos de plaguicidas. Revista Red Agrícola 45: 44.

Diez Jerez, M., Palma Cifuentes, G., Altamirano Quijada, C., Briceño Muñoz, G., Calderón Ramírez, C., Díaz Sánchez, J.,

Rubilar Araneda, O. y Tortella Fuentes, G. (2013). Manual de construcción y operación de lechos biológicos. Universidad de La Frontera. Temuco, Chile. ISBN 978-956-236-235-1.

Elorza, F. M. y Moavro, E. A. (2020). Jornadas de Buenas Prácticas de Aplicación de Productos Fitosanitarios (BPAF)

con énfasis en los entornos periurbanos. Serie de Informes Especiales ILSI Argentina. Volumen X Julio. ISBN 978-987-

-8-5.

Flaherty, R. J., Nshime, B., De La Marre, M., De Jong, S., Scott, P. y Lantz, A. W. (2013). Cyclodextrins as complexation

and extraction agents for pesticides from contaminated soil. Chemosphere 91: 912-920.

Gao, W., Liang, J., Pizzul, L., Feng, X. M., Zhan, K. y Castillo, M. (2015). Evaluation of spent mushroom substrate as substitute of peat in Chinese biobeds. International Biodeteriorationand Biodegradation 98: 107-112.

Hernández-Mendieta, E., Guillén-Sánchez, D., López-Martínez, V., Tejacal, I., Andrade-Rodríguez, M., Villegas-Torres,

O., Martínez Fernández, E., Huerta-Lara, M. y Segura-Miranda, A. (2013). Identificación del agente causal de la

pudrición blanca en Morelos, México. Revista Colombiana de Biotecnología 15 (2): 1-8.

https://doi.org/10.15446/rev.colomb.biote.v15n2.41744.

Ley 10633-Córdoba. “Programas de Buenas Prácticas Agropecuarias de Córdoba”. Legislatura de la provincia de

Córdoba. 16 de octubre del 2019. http://www.alimentosargentinos.gob.ar/bpa/documentos/LEY_BPA_cordoba.pdf

Kuwahara, J., Glenn, M., Gold, M. y Gold, M. H. (1984). Separation and characterization of two extracelular H2O2 dependent oxidases from ligninolytic cultures of Phanerochaete chrysosporium. FEBS Letters 169 (2): 247-250.

Nikolaou, E., Agrafioti, I., Stumpf, M. y Quinn, I. S. (2009). Alistair. Phylogenetic diversity of stress signaling pathways in fungi. BMC Evolutionary Biology 9: 1-18.

Page, A., Millar, R. y Keney, D. (1982). Methods of soil analisys. Parte 2 Agronomy Monograph 9 A.S.A. y SSSA Madison, Wisconsin.

Paszczynski, A., Crawford, R. L. y Huynh, V. B. (1988). Manganese peroxidaseof Phanerochaete chrysosporium:

purification. Methods in Enzymology 161 (b): 264-270.

Pereira, P. M., Teixeira, R. S. S., Oliveira, M. A. L, Silva, M. y Santana, V. F. L. (2013). Optimized Atrazine Degradation by

Pleurotus ostreatus INCQS 40310: an Alternative for Impact Reduction of Herbicides Used in Sugarcane Crops. Journal of Microbial and Biochemical Technology S12: 006. doi: 10.4172/1948-5948.S12-006

Pizzul, L., Castillo, M. del P. y Stenström, J. (2009). Degradation of glyphosate and other pesticides by ligninolytic

enzymes. Biodegradation 20 (6): 751-759.

Quinteros Díaz, J. C. (2011). Revisión: Degradación de Plaguicidas Mediante Hongos de la Pudrición Blanca de la

Madera. Revista Facultad Nacional de Agronomía Medellín 64 (1): 5867-5882.

Serbent, M. P., Guimarães, D. K. S., Drechsler-Santos, E. R., Helm, C. V., Giongo, A. y Tavares, L. B. B. (2020). Growth,

enzymatic production and morphology of the white-rot fungi Lentinus crinitus (L.) Fr. upon 2,4-D herbicide

exposition. International Journal of Environmental Science and Technology 17 (5): 2995-3012.

https://doi.org/10.1007/s13762-020-02693-1.

TAPPI (1999). Test Methods. Technical Associaton for the Pulp and Paper Industries. TAPPI Press. Atlanta.

Tien, M. y Kirk, T. K. (1988). Lignin Peroxidase of Phanerochaete chrysosporium. Methods in Enzymology 161: 238-249.

Tortella, G., Rubilar, O., Castillo, M. d. P, Cea, M., Mella-Herrera, R., yDiez, M. (2012). Chlorpyrifos degradation in a

biomixture of biobed at different maturity stages. Chemosphere 88: 224-228.

Zhang, Y., Meng, D., Wang, Z., Guo, H. y Wang, Y. (2012). Oxidative stress response in two representative bacteria exposed to atrazine. FEMS Microbiology Letters 334 (2): 95-101.

Zhu, G., Huang, F., Feng, L., Qin, B., Yang, Y., Chen, Y. y Lu, X. (2008). Sensitivities of Phytophthora infestans to

Metalaxyl, Cymoxanil, and Dimethomorph. Agricultural Sciences in China 7: 831-40.

Zucconi, F., Pera, A., Forte, M. y De Bertoli, M. (1981). Evaluating toxicity in immature compost. Biocycle 22: 54-57.

Potencial de hongos de pudrición blanca en el tratamiento

Published

2022-10-20

How to Cite

Rodríguez, M. E., Pergassere, G. B., Kubach, C., Ortiz, A., Grasso, F., Montoya, P., Campitelli, P., & Robledo, G. . (2022). Potential for White rot fungi in the treatment of pesticides for the development of biobeds: Bioremediation systems: biobeds. Lilloa, 59(suplemento), 63–76. https://doi.org/10.30550/j.lil/2022.59.S/2022.08.11

Issue

Section

Original papers

Most read articles by the same author(s)