Insights into the fatty acid profile and taxonomy of the extremophilic moss Hedwigia emodica (Bryophyta, Hedwigiales, Hedwigiaceae)
DOI:
https://doi.org/10.30550/j.lil/2092Keywords:
GC-MS, LC-PUFA, mosses, ω-3-Fatty acid, quantificationAbstract
Extremophilic mosses are known to produce a variety of long-chain polyunsaturated fatty acids in response to various abiotic stresses. These fatty acids facilitate in membrane fluidity, enabling their survival in extreme conditions. The present study investigates the fatty acid profile and taxonomy of the extremophilic moss Hedwigia emodica. The species was found in the Northwestern Indian Himalayan region and is characterized by certain identifying features such as straight leaves, 0.6–0.8 mm wide; long hyaline hair-pointed tip ca. 20?40% of leaf length; leaf margins weakly recurved or plane; median leaf cells with simple to minimally branched adaxial papillae, and obscuring cell walls. Gas Chromatography-Mass Spectrometry analysis revealed a total of 20 different fatty acids, including saturated, monounsaturated, and polyunsaturated fatty acids. Notably, ?-linolenic acid is found to be present in the highest amounts,accounting for 35.44% of the total fatty acids, followed by arachidonic acid with 15.05% of the total fatty acids. We also quantified these fatty acids per gram of moss tissue. The content of ?-linolenic acid (?-3 essential fatty acid) was 5059.861±0.66 ?g/g, whereas ?-linoleic acid (?-6 essential fatty acid) was 1785.24±0.00 ?g/g. Furthermore, the amounts of long-chain polyunsaturated fatty acids such as eicosapentaenoic and arachidonic acid were found to be 1026.37±0.06 and 2137.95±0.05 ?g/g, respectively. Our findings revealed a significant proportion of nutritionally, medicinally, and biologically important fatty acids that can be used for industrial purposes. The present study is the first-ever quantitive estimation of fatty acid content in this taxon, paving the way for further research into the field of moss lipid biochemistry and the environmental influence on moss fatty acids.
Downloads
References
Beike, A. K., Jaeger, C., Zink, F., Decker, E. L. & Reski, R. (2014). High contents of very long-chain polyunsaturated fatty acids in different moss species. Plant Cell Reports 33: 245-254. https://doi.org/10.1007/s00299-013-1525-z
Boelen, P., van Dijk, R., Sinninghe Damsté, J. S., Rijpstra, W. I. C. & Buma, A. G. (2013). On the potential application of polar and temperate marine microalgae for EPA and DHA production. AMB Express 3: 1-9. https://doi.org/10.1186/2191-0855-3-26
Brash, A. R. (2001). Arachidonic acid as a bioactive molecule. The Journal of clinical investigation 107 (11): 1339-1345. https://doi.org/10.1172/JCI13210
Cahoon, E. B. & Li-Beisson, Y. (2020). Plant unusual fatty acids: learning from the less common. Current opinion in plant biology 55: 66-73. https://doi.org/10.1016/j.pbi.2020.03.007
Calder, P. C. (2021). Health benefits of omega-3 fatty acids. In: García-Moreno, P. J., Jacobsen, C., Sørensen, A. D. M., Yesiltas, B. (Editors). Omega-3 Delivery Systems. USA (pp. 25–53) Academic Press. https://doi.org/10.1016/b978-0-12-821391-9.00006-5
Canli, K., Cetin, B., Altuner, E. M., Turkmen, Y., Uzek, U. & Dursun, H. (2014). In vitro antimicrobial screening of Hedwigia ciliata var. leucophaea and determination of the ethanol extract composition by gas chromatography/mass spectrometry (GC/MS). Mass Spectrometry (GC/MS). Journal of Pure and Applied Microbiology 8 (4): 2987-2998.
Choudhary, A. K. & Mishra, G. (2021). Functional characterization and expression profile of microsomal FAD2 and FAD3 genes involved in linoleic and ?-linolenic acid production in Leucas cephalotes. Physiology and Molecular Biology of Plants 27 (6):1233-1244. https://doi.org/10.1007/s12298
Choudhary, A. K., Sunojkumar, P. & Mishra, G. (2017). Fatty acid profiling and multivariate analysis in the genus Leucas reveals its nutritional, pharmaceutical and chemotaxonomic significance. Phytochemistry 143: 72-80. https://doi.org/10.1016/j.phytochem.2017.07.007
Dalton, N. J., Kungu, E. M. & Long, D. G. (2013). A taxonomic revision of Hedwigiaceae Schimp. from the Sino-Himalaya. Journal of Bryology 35 (2): 96-111. https://doi.org/10.1179/1743282012Y.0000000043
Dembitsky, V. M., Rezanka, T., Bychek, I. A. & Afonina, O. M. (1993). Polar lipid and fatty acid composition of some bryophytes. Phytochemistry 33 (5): 1009-1014. https://doi.org/10.1016/0031-9422(93)85013-H
Din, J. N., Newby, D. E. & Flapan, A. D. (2004). Omega 3 fatty acids and cardiovascular disease—fishing for a natural treatment. BMJ 328 (7430): 30-35. https://doi.org/10.1136/bmj.328.7430.30
Doughman, S. D., Krupanidhi, S. & Sanjeevi, C. B. (2007). Omega-3 fatty acids for nutrition and medicine: considering microalgae oil as a vegetarian source of EPA and DHA. Current Diabetes Reviews 3 (3): 198-203. https://doi.org/10.2174/157339907781368968
Filippova, I. P., Makhutova, O. N., Guseynova, V. E. & Gladyshev, M. I. (2023). Fatty Acid Profiles of Some Siberian Bryophytes and Prospects of Their Use in Chemotaxonomy. Biomolecules 13 (5): 840. https://doi.org/10.3390/biom13050840
Hedenäs, L. (1994). The Hedwigia ciliata complex in Sweden, with notes on the occurrence of the taxa in Fennoscandia. Journal of Bryology 18 (1): 139-157. https://doi.org/10.1179/jbr.1994.18.1.139
Horrobin, D. F. (1992). Nutritional and medical importance of gamma-linolenic acid. Progress in Lipid Research 31 (2): 163-194. https://doi.org/10.1016/0163-7827(92)90008-7
http://archpsyc.jamanetwork.com/pdfaccess.ashx?url=/data/journals/psych/12572/
Ignatova, E. A., Kuznetsova, O. I., Fedosov, V. E. & Ignatov, M. S. (2016). On the genus Hedwigia (Hedwigiaceae, Bryophyta) in Russia. Arctoa 25 (2): 241-277. https://doi.org/10.15298/arctoa.25.20
Kazaz, S., Miray, R., Lepiniec, L. & Baud, S. (2022). Plant monounsaturated fatty acids: Diversity, biosynthesis, functions and uses. Progress in lipid research 85: 101138. https://doi.org/10.1016/j.plipres.2021.101138
Lausanne, S., Akiskal, H. S., Walker, P., Puzantian, U., Pickar, D., Murphy, D. L., Cohen, R. M. & Campbell, I. C. (1983). Bipolar outcome in the course of depressive illness: phenomenologic, familial, and pharmacologic predictors. Journal of affective disorders 5 (2): 115-128.
Lu, Y., Eiriksson, F. F., Thorsteinsdóttir, M. & Simonsen, H. T. (2019). Valuable fatty acids in bryophytes-Production, biosynthesis, analysis and applications. Plants 8 (11): 524. https://doi.org/10.3390/plants8110524
Lu, Y., Eiriksson, F. F., Thorsteinsdóttir, M., Cronberg, N. & Simonsen, H. T. (2023). Lipidomes of Icelandic bryophytes and screening of high contents of polyunsaturated fatty acids by using lipidomics approach. Phytochemistry 206: 113560. https://doi.org/10.1016/j.phytochem.2022.113560
Ludwiczuk, A. & Asakawa, Y. (2019). Bryophytes as a source of bioactive volatile terpenoids–A review. Food and Chemical Toxicology 132: 110649. https://doi.org/10.1016/J.FCT.2019.110649
Luni?, T., Boži?, B. & Nedeljkovi?, B. B. (2022). Immunomodulatory Potential of Hedwigia ciliata and Hypnum cupressiforme. In: Murthy, H. N. (Editor), Bioactive Compounds in Bryophytes and Pteridophytes. India: 1-29. Springer Cham. https://doi.org/10.1007/978-3-030-97415-2_5-1
Lv, Y., Li, K., Wang, S., Wang, X., Yue, G., Zhang, Y.... & Cui, Y. (2024). Protective role of arachidonic acid against diabetic myocardial ischemic injury: a translational study of pigs, rats, and humans. Cardiovascular Diabetology 23 (1): 58. https://doi.org/10.1186/s12933-024-02123-3
Mata-Pérez, C., Sánchez-Calvo, B., Begara-Morales, J. C., Luque, F., Jiménez-Ruiz, J., Padilla, M. N., ... & Barroso, J. B. (2015). Transcriptomic profiling of linolenic acid-responsive genes in ROS signaling from RNA-seq data in Arabidopsis. Frontiers in Plant Science 6: 122. https://doi.org/10.3389/fpls.2015.00122
Mba, O. I., Dumont, M. J. & Ngadi, M. (2015). Palm oil: Processing, characterization and utilization in the food industry–A review. Food Bioscience 10: 26-41. https://doi.org/10.1016/j.fbio.2015.01.003
Moncada, S. & Vane, J. R. (1979). Arachidonic acid metabolites and the interactions between platelets and blood-vessel walls. New England Journal of Medicine 300 (20): 1142-1147. https://doi.org/10.1056/NEJM197905173002006
Mühlroth, A., Li, K., Røkke, G., Winge, P., Olsen, Y., Hohmann-Marriott, M. F., ... & Bones, A. M. (2013). Pathways of lipid metabolism in marine algae, co-expression network, bottlenecks and candidate genes for enhanced production of EPA and DHA in species of Chromista. Marine drugs 11 (11): 4662-4697. https://doi.org/10.3390/md11114662
Nelson, J. R. & Raskin, S. (2019). The eicosapentaenoic acid: arachidonic acid ratio and its clinical utility in cardiovascular disease. Postgraduate medicine 131 (4): 268-277. https://doi.org/10.1080/00325481.2019.1607414
Pereira, H., Barreira, L., Figueiredo, F., Custódio, L., Vizetto-Duarte, C., Polo, C., ... & Varela, J. (2012). Polyunsaturated fatty acids of marine macroalgae: potential for nutritional and pharmaceutical applications. Marine drugs 10 (9): 1920-1935. https://doi.org/10.3390/MD10091920
Poddar-Sarkar, M., Biswas Raha, A., Datta, J. & Mitra, S. (2022). Chemotaxonomic and evolutionary perspectives of Bryophyta based on multivariate analysis of fatty acid fingerprints of Eastern Himalayan mosses. Protoplasma 1-13. https://doi.org/10.1007/s00709-021-01723-0
Ramakrishna, A. R. & Ravishankar, G. A. (2011). Influence of biotic stress signals on secondary metabolites in plants. Plant Signaling and Behaviour 6 (11): 1720-1731. https://doi.org/10.4161/psb.6.11.17613
Sharma, R. (2012). Omega-3 Fatty Acids in Prevention of Cardiovascular Disease in Humans: Chemistry, Dyslipidemia. In: Watson, R. R., Preedy, V. R. (Editors), Bioactive Food as Dietary Interventions for Cardiovascular Disease: Bioactive Foods in Chronic Disease States. United Kingdom: (pp. 465-489), Elsevier Science. https://doi.org/10.1016/B978-0-12-396485-4.00028-1
Wilczynska-Kwiatek, A., Singh, R. B. & De Meester, F. (2010). Nutrition and behaviour: the role of ?3 fatty acids. The Open Nutraceuticals Journal 3 (1). http://dx.doi.org/10.2174/18763960010030300119
Yeshi, K., Crayn, D., Ritmejeryt?, E. & Wangchuk, P. (2022). Plant secondary metabolites produced in response to abiotic stresses has potential application in pharmaceutical product development. Molecules 27 (1):313. https://doi.org/10.3390/MOLECULES27010313
Zurier, R. B., Rossetti, R. G., Jacobson, E. W., Demarco, D. M., Liu, N. Y., Temming, J. E., ... & Laposata, M. (1996). Gamma?linolenic acid treatment of rheumatoid arthritis. A randomized, placebo?controlled trial. Arthritis & Rheumatism 39 (11): 1808-1817. https://doi.org/10.1002/art.1780391106

Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 1900 Lilloa

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.