
T N T S C R I P T S
General Documentation

(as of IX.2009)

CONVENTIONS

Throughout this document, regular TNT commands are shown in CAPITALS,
macro commands in bold, internal variables with italics, and user
variables as underlined.

ACTIONS

In the vast majority of cases, actual actions are done with
regular TNT commands (those listed under "help;"). The idea in
scripts is using specific macro commands, which allow to
automatically control the actions that are executed (or making
specific calculations with values obtained from actions). This
handout concentrates on the use and syntax of scripting commands
only. For the use of general (regular) commands of TNT, the user
should refer to the general documentation.

COMMANDS FOR SCRIPTS/MACROS

Commands for scripts are those listed under "help+;". They allow
making decisions, accessing internal variables of the program
(e.g. how many trees are held in memory, what's their length,
etc.), and assigning values to variables defined by the user.

The internal variables of the program can be accessed only
within the context of the commands for macros; they are read-only
values.

The variables defined by the user can be named; writing the
name (or number) of the variable within quotes is equivalent,
within any context, to writing the value that has been assigned to
the variable. User variables can be assigned values (or, rarely,
strings), with the (macro) command set.

The user variables provide the bridge between macro commands
or expressions (decisions, internal variables) and the regular TNT
commands (actions). Keep in mind that internal variables can only
be recognized from within macro commands, not from regular TNT
commands. An example: the expression ntrees corresponds to the
internal variable "number of trees minus one". The (regular) KEEP
command retains as many trees as specified, so that "KEEP ntrees"
might be used to discard the last tree in memory –except that KEEP
isn't supposed to recognize expressions for internal variables.
The command set (a macro command) does recognize such expressions,
and then it can be used to assign the number ntrees to an internal
variable (say, number 0), which (if enclosed within quotes) can
subsequently be recognized within any context as representing the

number of trees minus one:

set 0 ntrees ;
KEEP '0' ;

The following example also illustrates a very simple decision-
making process (showing in bold the macro commands, italics the
internal variables, underlined the user variables, and CAPITALS the
regular TNT commands):

PROC %1 ; /* read data set, from first arg ... */
var: success ; /* declare user variable */
MULT ; /* make a search... */
if (length[0] < 1000) /* check the result */

set success 1 ;
else set success 0 ; end
if ('success') /* report result... */

QUOTE The search found less than 1000 steps ;
else QUOTE The search failed to find less than 1000 steps; end
PROC/; /* close file with instructions */

(the intermediate step of placing the value of the length
comparison in a user variable has been added only to make the
example clearer, as it is obviously unnecessary).

EXPRESSIONS

General syntax is similar to that in C. Precedence is checked
from left to right (the parser works by calculating the values as
it reads the expressions). Operators: arithmetic (+ - * /),
comparisons (== > < >= <= !=), logical (&& || !), and bitwise
operations (& | ^). When a number is expected, within the context
of a macro command, enclosing a series of numbers (0-29) in curly
braces is equivalent to typing the integral number that

corresponds to that bit set (that is, { 0 3 4 } = 20+23+24 = 1 + 8
+ 16 = 25). Bitwise representation is used (as in other parsimony
programs) to store sets of states at internal nodes or polymorphic
terminal taxa; the expressions that access state-sets (such as
states, see under "help+states;") return sets of states as sets of
bits.

The legal operations and comparisons are:

a == b if a equals b, value is 1 (0 otherwise)
a > b if a is greater than b, value is 1

(same for <)
a >= b if a is greater than or equal to b, value is 1

(same for <=)
a != b if a is different from b, value is 1
a && b if conditions a and b fullfilled, value is 1
a || b if conditions a or b fullfilled, value is 1
!a if condition a is not fullfilled, value is 1

a & b if a bit is 1 in a and in b, it is 1 in the result
a | b if a bit is 1 in a or b, it is 1 in the result
a ^ b if a bit is 1 in a or b (but not both), then it is

1 in the result

A "condition" may consist of just the numerical value of a number.
For example, the variable success in the example above, might have
been checked as

if ('success' == 1) ...

but, given that success itself can take values 0 (zero, "false"),
or different from 0 ("true"), this is unnecessary, and identical
to the more economical expression used in the example:

if ('success') ...

Note that a negative number is different from 0, and therefore is
also evaluated as "true".

Also, the value returned by a logical comparison is either 0
or 1, which sometimes facilitates writing more compact
instructions. For example, placing in a variable numlongtrees the
number of trees that are longer than (say) 1000 steps might be
done as:

loop 0 ntrees
if (length[0] > 1000)

set numlongtrees 'numlongtrees'+1 ;
end

stop
QUOTE There are 'numlongtrees' above 1000 steps ;

But the same result would be achieved by the more compact:

loop 0 ntrees
set numlongtrees += (length[0] > 1000) ;
stop

QUOTE There are 'numlongtrees' above 1000 steps ;

INTERNAL VARIABLES

See list under "help+;". They allow to recognize dimensions of
the data (taxa, characters, number of trees in memory, etc.), tree
statistics (length, number of branches, number of taxa, etc.),
making lists of nodes for given trees (up and down), identifying a
common ancestor of some nodes in a tree, character/taxon
activities, etc. etc. etc.

DECISIONS

Made with commands if, else and end. Every if has to be matched
by an end (or, optionally, an else), and every else has to be
matched by an end. General form:

if (condition)
actions A, decisions A ...

else
actions B, decisions B ...
end

If the condition that follows the if is different from 0, then
actions/decisions A are executed, otherwise actions/decisions B
are executed. There can be any number of nested if/else's.

LOOPING

Loops are used to execute repetitive actions. The general form
is:

loop =name X+Y Z
actions, decisions ...
stop

where X, Y and Z are integral numbers, and "name" is the name
(optional) which the loop receives. The loop is executed from X
(inclusive) to Z (inclusive), every time increasing value in Y
(this is optional; if the "+Y" is ommitted, then loop value is
increased in 1 every time). Every time a loop of level N is
executed, if the expression #N is found within the instructions
for the loop, then this is replaced by the value corresponding to
that loop iteration. If the loop has been named, then "#name"
produces the same effect. If there are nested loops, the first
(outermost) is #1, second is #2, etc. Within the loop, the
following commands are recognized: endloop (terminates), continue
(moves onto the next cycle), and setloop N (re-sets loop to value
N and continues running). Loop numbering is specific for every
input file (i.e. outermost loop in a file is always #1, regardless
of loops in previous input files); thus, the only way to access
the value of a loop from a previous input file is through the use
of a loop name.

Other commands that execute repetitive actions, for specific
purposes, are:

sprit N.- executes all the actions between sprit and stop, for
every SPR rearrangement of tree N. Commands recognized from
within sprit are: resetswap (replaces tree N by the current
rearrangement, and begins to rearrange the new tree), continue,
and endswap.

tbrit N.- as sprit, but doing TBR rearrangements.

RESAMPLE, QNELSEN, SECTSCH.- These commands also execute
instructions within a loop. In the case of resample and qnelsen,
a single level is permitted (i.e. a resample cannot be nested
within another resample); in the case of sectsch, there can be
multiple levels. The instructions to be executed within the loop
are specified within square brackets; the instructions are treated
as if they were a new level of input file, which means that loop
numbering starts again from 1, and the execution of a given cycle
can be interruted with "PROC/;" (but note that a PROC/ is not
required at the end). In the case of resample, the data in every
cycle are automatically resampled (according to the type of
resampling required by the user, see "help resample;"). After
executing all the instructions for the cycle, the trees that are
left in memory (presumably, resulting rom analyzing the resampled
data with search commands or routines to the choice of the user)
rae used to calculate a strict consensus, and at the end the
majority rule tree, or the frequency difference consensus, are
calculated. Qnelsen works in a similar way, but without
resampling (so that it allows quick consensus estimtations).
Sectsch creates reduced data sets, for running sectorial searches;
in every cycle, the data received will correspond to a reduction
of the tree, to effect a sectorial search with routines that can
be defined by the user. Every instance of sectsch inherits a
(single) tree in memory, corresponding to the current resolution
of the tree used to partition the data. Every time a cycle is
completed, sectsch automatically selects one of the best trees
that have been left in memory, and reinserts it into the main
tree. In the case of sectsch, if the routine to analyze each
sector is not specified, the default algorithms for sector
analysis are used. In the case of qnelsen or resample, if the
routine to analyze every cycle is not specified, the last routine
used (or the default one) is used.

Iterrecs.- Iterrecs allows generating (and accessing) every one of
the most parsimonious reconstructions, for a specified tree and
character. The syntax is:

iterrecs tree character variable
... instructions...
...
...

 endrecs ;

the variable must be an array, with enough cells to contain at
least as many values as nodes there are in the tre. In every
cycle, the variable will contain values corresponding to the node
states for that particular reconstruction. Within iterrecs, the
command killrecs (which interrupts the whole process) is

recognized. It is possible to have multiple levels of iterrecs.
Additional details (like, how to use ancestor-descendant
differences instead of the states themselves, and how to force
presence or absence of a given state to a node, so as to find the
best reconstruction which either has, or doesn't have, that state)
can be seen under "HELP iterrecs;". The instructions for iterrecs
are treated as a new level of input file (so that they can be
interrupted with "PROC/;").

Travtree.- This command allows travelling through a tree, visiting
the nodes in a specified sequence. Syntax is:

travtree type tree node variable
... instructions...
...
...
endtrav ;

the variable is a simple variable (not an array), which, in every
cycle, will contain the number of node being visited. "Type" can
be one of the following: 1) down, visits the nodes of the subtree
corresponding to the specified node (root = entire tree), in a
down-pass; 2) up, like the previous one, but in an up-pass (up can
be followed by the string terms, if you want the terminals
corresponding to the subtree to also be visited; otherwise only
internal nodes are visited); 3) below, which travels from the
specified node towards the root, and 4) path, which travels
between two nodes (it requires specification of two nodes instead
of one). If the variable is preceded by a minus sign (-), then
the first element in the list is skipped. Within travtree, the
commands skipdes (it has an effect only in the type up, and makes
subsequent cycles to skip the descendants of current node) and
killtrav (immediately finishes the trip) are recognized.

Combine.- This command allows enumerating combinations, in a loop.
Syntax is:

 combine X min/max varname

... instructions...

...

...
endcomb

which enumerates the combination of min out of X elements, then
min+1 out of X, min+2 out of X, ... max out of X. If "/max" is
ommited, then max = min. The elements are written to variable
"varname" (must be an array), and listsize equals number of
elements minus 1 (keep in mind that listsize can be subsequently
modified within the loop, make sure to store value at the
beggining of loop if this is so).

 For example, assume "array" is a proper array; then

 combine 4 2 array QUOTE 'array[0-listsize]' ; endcomb ;

will produce:

 0 1
 0 2
 0 3
 1 2
 1 3
 2 3

as output.

USER VARIABLES

DECLARATION
User variables are declared as:

var: name_a name_b name_c[dims_for_c] ;

this declares name_a and name_b as simple variables, and an array
name_c (of a number of values, or cells, equal to dims_for_c). If
several declarations are repeated (i.e., new instances of var:),
the new declaration will place the first declared variable in the
memory area that is contiguous to the last variable declared in
the previous instance of var:. It is possible to un-declare
variables (for example, to alleviate the use of memory by the
macro system), with var – name; or var – N (this eliminates from
the list all the variables that had been declared after variable
called name, or numbered as N, inclusive). If no name or number
is specified, then all the variables that had been declared in the
current input file are un-declared. For alternative ways to
declare variables, see documentation of TNT. Variable declaration
is internal of every input file; every time an input file, al the
variables that had been declared within that input file are
automatically eliminated. If a variable is declared with the same
name that had been used in a previous input file (not yet closed,
from which the current one was called), then the name refers to
the variable in the current file (variables in other input files
can be accessed only if they have a different name).

SETTING VALUES
To asign a value to a variable, the set command is used,

followed by the name (and cell, if an array) of the variable, and
an expression (to indicate the value that the variable will take).
A few expressions (=internal variables) automatically transfer
values to array (such as freqlist, freqdlist, bremlist, uplist,
downlist, randomlist; see help+ for details), case in which the

variable given to set has to have enough cells available. The
expression states also can, optionally, return values as uni- or
bi-dimensional arrays (replacing the number of characters, or
taxa, or both, by a period). As for the expression itself, if it
is replaced by ++ the value of the variable is increased in one,
with -- it is decreased, with +=X it is increased in X, and with -
=Y it is decreased in Y.

It is possible to store a string in a variable (case in
which, you have to be careful not to overwrite variables adjacent
in memory; the program does NOT check for this error), giving
after the name of the variable the symbol "$" followed by the
string (strings are accessed in the same way as they are set, see
below).

Last, it is also possible to assign values to a complete
array, with the setarray command.

ACCESS
Once user variables have been assigned a value, it is possible to
use that value in comparisons, calculations, etc. Enclosing the
name (or number) of the variable within single quotes is
equivalent to writing the value that has been assigned to the
variable, in any context. It is this feature which allows using
these variables in regular TNT commands.

As example, consider a case where we want to select a taxon
at random to be deactivated. The expression getrandom is
recognized exclusively within the context of the macro commands
(i.e. those listed under help+), and therefore we could NOT do
something like:

TAXCODE - getrandom[0 ntax] ;

since the TAXCODE command is not a macro command and it expects as
arguments(s) nothing more than numbers, taxon names, or taxon
groups. This would have to be done as follows:

var: thetax ; /* declare variable... */
set thetax getrandom[0 ntax] ; /* ... and assign to it a

 random number, between 0
and number of taxa – 1 */

 TAXCODE - 'thetax' ; /* deactivate taxon */

The number of decimals with which the value of the variable
is read is (by default) the one that has been set with macfloat N
(default = 5). It is possible to give a specific format to the
number (useful for creating formatted output, see below, under
FORMATTED OUTPUT).

In the case of arrays, it is possible to convert the variable
into a series of values automatically. Thus, if the variable
called (for example) listaxa contains numbers 4, 8, 3 , 12, and 15
as its first 5 values (cells 0-4), the expression 'listaxa[0-4]'
is equivalent to writing "4 8 3 12 15" (for example, TAXCODE -
'listaxa[0-4]' will deactivate those five taxa). If the second

number is followed by the symbol & and a number N, then character
ASCII N is used as separator of the numbers: 'listaxa[0-4 &43]' is
equivalent to writing "4+8+3+12+15". This is useful to create
lists containing a number of elements that is unknown before
running the script. The following script lists the taxa which
have been deactivated:

var:

 numelements

 dalist[(ntax + 1)] ;

set numelements 0 ;

loop 0 ntax

if (isactax [#1]) continue ; end

set dalist ['numelements'] #1 ;

set numelements ++ ;

stop

macfloat 0 ;

QUOTE A total of 'numelements' taxa are currently inactive: ;

QUOTE 'dalist [0 – ('numelements'-1)]' ; /* we dont know
ahead of time how many
numbers we print! */

PROC/;

If instead of enclosing the number/name of the variable
within quotes, it is preceded by the symbol $, then the variable
is interpreted as the string the begins at that position. This
can also be applied to some special cases (the meaning of which, I
hope, will be obvious to the reader): $dataset, $taxon N,
$character N, $state C S, $ttag N, $host N.

PLOTS/CORRELATION
It is also possible to produce (veeery simple) plottings of the
values in one (or two) array(s), with the "var+" option. The
option "var&" calculates a lineal regression between two variables
(the values are stored in the internal variables regr, regalfa, y
regbeta, of obvious meaning). See "help+var" for details.

The maketable command, through the specification of an array
(or two), allows displaying the values of the array in table
format (a double table, in case two arrays are specified). See
"help maketable;" for details on how to use this command.

PROGRESS INDICATOR

The command "progress done todo text;" (where done and todo are
numbers) shows what proportion of todo done represents, in the
form of a progress bar. The progress bar also automatically

checks for user-interruptions, so that the macro routine can be
interrupted. To use the progress command, it is necessary that
the "report" option (REPORT command) be off. Once the task is
concluded, the progress bar must be closed with progress/.

MEMORY FOR MACROS

The memory used for macros is separate from the memory used for
data, trees, etc. The user variables occupy memory for the
macros, and all the copying of the instructions of every level of
looping (and subsequent expansion of the corresponding expressions
in every cycle) is also done in a region of memory accessible to
the macros. If you need to increase the number of available
variables (default = 1000), or maximum loop nesting (default =
10), the command macro * L V can be used (where L = max loops, and
V = max. variables). The total amount of RAM to be used by the
macros can be changed with macro [K (where K = number of
kylobytes to assign to the macros, default = 100). The maximum
nesting for input files can be changed with the MXPROC command. It
is possible to store user variables as int's, instead of double's,
case in which every cell of a user variable will occupy 32 bits
(with macfloat-), instead of 64 (with macfloat=, the default);
this can be used to diminish the amount of RAM that a given
routine will need.

INPUT REDIRECTION

NORMAL
To begin reading instructions from a file, the command PROCEDURE can
be used, followed by the name of the file to parse. The command
RUN does the same, but it reads all the arguments following the
name of the file (max. 32), until it finds a semicolon:

run myfile arg1 arg2 arg3;

then, within file myfile, the expression %1 is equivalent to arg1,
etc. (%0 is equivalent to the name of the file itself, that is,
myfile). When TNT finds a command it doesn't recognize, it checks
to see whether a file with that name, and extension *.run, exists
in the current directory, and if so, it reads and executes the
file (taking arguments).

The file with instructions is executed until the command
PROCEDURE/ (i.e. PROCEDURE with a slash) is found. It is possible to
have nested input files (the default maximum is 15, but this can
be changed with MXPROC). Alternativelly, the file can be closed
with the return command, followed by a number. This closes the
file and writes in the internal variable exstatus ("exit-status")
the exit value.

"FUNCTIONS" (GOTO)
With the command:

goto myfile tagname arg1 arg2 arg2 ;

instructions are taken from file myfile, beggining at the point
marked with label tagname. The arguments are as in the preceding
cases. A default "target" file can be defined for goto, with
goto = defaultfile (and note: goto = %0 defines as default the
file itself). After having defined a default target, the name of
the file after the goto command is skipped (specifying just the
tagname). After concluding execution of the instructions in
myfile, the instructions that had not been read in the file from
where myfile had been called continue being read (that is: this is
different from the goto in most programming languages, because it
executes and returns to the calling point, acting more like a
function). This can be used to make instructions files simpler
and cleaner, placing the necessary routines under different
labels.

AUTOMATIC INPUT REDIRECTION (@@)
At (almost) any point during execution, if a double "at" (@@), is
found in the input, it is interpreted as a goto (with the end of
the file indicated also as double at, instead of PROC/). The
difference with goto is that automatic redirection allows
replacing expressions within executions of commands, by
substituting the contents of the file textfile instead of the
@@textfile. Thus, the following code:

 quote Sorry. An error occurred. @@textfile message1 $dataset ; ;

(note that two semicolons are needed here, since the first one
indicates termination of the chain of arguments for input
redirection, and it is ignored by the QUOTE command; the second
semicolon terminates the QUOTE). If the file textfile contains:

label message1
Cannot analyze file %1.

 @@

this will produce on output (if we have read our data from file
mydata.tnt) the equivalent of placing the contents of textfile
within the QUOTE command, or:

 quote Sorry. An error occurred. Cannot analyze file $dataset. ;

That is, it will produce as output:

 Sorry. An error occurred. Cannot analyze file mydata.tnt.

Note that the replacement is literal. The use of @@ may help to
write more readable scripts, but it is iffy and picky (it will

probably take you several tries to get it right).

RECURSION
Normally, the instructions within a file cannot invoke input
redirection for the file itself. One exception is the use of
goto, which can redirect input to specific parts of any file
(including itself). Self-invokation can also be done, more
simply, with the recurse command, which makes the file call itself
(arguments given to recurse are read and transferred).

DIALOGS (WINDOWS ONLY)

The command opendlg allows defining functional dialogs, with ease.
Several examples of dialogs are contained within the file with
example scripts (zipdruns.exe).

TREE-BRANCH LEGENDS (reading/writing)

The command ttag handles overlapping legends (or "tags") in the
branches of a "target" tree. A specific target (say, tree N) can
be defined with ttag * N. Once the target is defined, a legend L
can be copied onto branch B, with ttag +R V; (successive calls add
text to the branch, concatenating). If you intend to start
writing text from scratch, you may need to turn off tre-legend
storing (with ttag-;), to eliminate preceding legends.

Once values have been written to a target tree, the value can
be read/retrieved, with $ttag R.

In windows versions, when the symbol \ (back-slash) appears
in some place of the tree-branch legend, the text following the
slash is placed in a new line when the tree is displayed in the
pre-view screen (or saved to a metafile). This can be used to
place some legend above branches, and some legend below (say,
bremer supports above, jacknifing below). The keys F11-F12 move
the labels up/dn respectively. Also in windows versions, it is
possible to display the tree-tags as colors (that is, the branch-
colors corresponding to states 0-9), using ttag:.

READING AND EDITING TREES

The TREAD command reads trees in parenthetical notation.
Although this is not a macro command, it is sometimes practical to
use it in combination with special instructions (as in the
hybtree.run routine, up in the scripts subdirectory of the TNT web
page). The syntax of TREAD allows some shortcuts in the definition
of trees: 1) a string followed by three periods (...) is
equivalent to listing all the taxa whose names start with the
string and have not yet been placed in the tree; 2) the expression
@T N is equivalent to listing all the terminal taxa included in
tree T, node N; 3) the expression +T N copies the subtree N of
tree T (with its corresponding resolution; note this is equivalent
to placing one terminal or node as belonging to the the

corresponding node); 4) the expression :name is taken to mean the
list of all taxa containing the string “name”.

It is also possible to effect changes to a tree using the EDIT
command. EDIT X Y edits node Y of tree X; if the first argument
(before X) is a closing bracket (]), then EDIT will not show the
resulting tree on screen (this will normally be desirable in the
case of scripts). After X and Y, specifying two numbers, J and K,
causes node J to be moved as sister group of node K (if K is a
descendant of J, then this reroots subtree J so that K is sister
group to anything else in that subtree; if J is a terminal and it
is not included in the tree, then J is added at the specified
position). If instead of two numbers, a single one, preceded
by /, is given (that is: /N), then node N of the tree is
collapsed.

To eliminate taxa from a tree, pruning them, the PRUNTAX
command can be used (followed by a list of the trees to prune, and
then a list of the taxa or groups of taxa to prune, separated by a
slash, /).

FORMATTED OUTPUT

The output can be formatted by making the QUOTE command not to
include a carriage return (ASCII character 10) every time is
executed. This is done by setting the quotes as "literal", with
LQUOTE=. If conversion to ASCII characters is allowed (with LQUOTE[),
then the symbol & inside a quote command (or inside the related
command, errmsg), followed by a number N, will write on output
ASCII character N. In non-windows versions only, character 0 (&0)
is interpreted as erasing the last line written to stderr, and
character 1 (&1) is interpreted as backspacing and erasing one
character in stderr.

Although the number of decimals in the conversion of user
variables can be set with the macfloat command, sometimes it is
necessary to use a more specific format. This can be done placing
a slash (/) after the single quote that precedes the user variable
to be converted (say, "result"), as follows:

'/+-W.Dresult'

where W and D are numbers. The symbol + indicates that the sign
(positive or negative) must be output always (default is writing
sign only if negative), the – indicates that the string will be
left-justified (default is that the string will be right
justified), the value W indicates the total width (in characters)
that the converted string will occupy, and .D indicates the number
of decimals to use (default is the number set with macfloat).

In many cases, it may be desirable to prevent the program
from producing its normal output (to the screen, or to the output
file). This can be controlled with the SILENT command: SILENT = xxx
makes xxx (console, file, buffer) mute, while SILENT – xxx makes it
non-mute.

One additional trick:

loop 1 3
QUOTE Opening file results#1.out ;
LOG results#1.out ;
 . . .
LOG/;
stop

will produce as output:

Opening file results1out
Opening file results2out
Opening file results3out

This is so because the dot after the "1" is interpreted as a dot
in a number with some decimals. Using a double period after the
"1" the problem is solved:

loop 1 3
QUOTE Opening file results#1..out ;
LOG results#1..out ;
 . . .
LOG/;
stop

which produces the desired output:

Opening file results1.out
Opening file results2.out
Opening file results3.out

HANDLING STRINGS

It is possible to access only part of the strings (either
pre-defined strings, such as taxon, character, or state names, or
user-defined strings).

Usage is (for all examples, assume string contains
“hypothetical”):

 $string:N displays the first N characters of “string”
 Examples:
 $string:5 displays “hypot”
 $string:20 displays “hypothetical ”

 $string:-N displays the last N characters of “string”
 Examples:
 $string:-5 displays “tical”
 $string:-20 displays “ hypothetical”

 $string:+N displays the characters of “string” following

 the first N
 Examples:
 $string:+5 displays “hetical”
 $string:+20 displays “” (nothing)

 $string<X display characters of “string” preceding X
 Example:
 $string<t displays “hypo”
 $string<c displays “hypotheti”

 $string>X display characters of “string” following first
 occurrence of X
 Example:
 $string>t displays “hetical”
 $string>c displays “al”

In the case of pre-defined strings which need specification of a
number, the number must follow the format specification. Thus, if
taxon number N is Xus_yus and you want to extract the generic and
specific names only, correct usage is:

 $taxon<_ N generic name (“Xus”)
 $taxon>_ N specific name (“yus”)

The same applies to character or state names.
You can also compare strings using the Needleman-Wunsch

algorithm, and calculate a similarity value, with the stringsim
expression.

Finally, you can also find where in string a given substring
is, with the isinstring expression:

 isinstring [hypothetical hyp] returns 3
 isinstring [hypothetical pot] returns 5
 isinstring [hypothetical nowhere] returns 0

Note that isinstring returns the position in main string where the
secondary one ends (instead of where it begins, which would return
a useless 0 for two identical strings!).

PARSING INPUT FILES

TNT also offers some rudimentary capabilities for file parsing,
with the hifile command (for Handle Input File). You can open file
XXX with hifile open:

 hifile open XXX;

Subsequent to opening XXX, invocation of some expressions returns
or displays values from XXX:

 $hifstring next string
 hifchar next character (reading it)

 hifspy next character (not reading it)
 hifnumber next number
 hiflines number of lines read

You can have up to 5 files open for parsing, and you can change,
close, or list active files with:

 hifile active
 hifile close
 hifile open
 hifile list
You can move through the file, skipping parts of it, using options
of the hifile command itself:

 hifile skip [XXX] N skip N characters
 hifile skips [XXX] N skip N strings
 hifile seek [XXX] C N read until finding character C,
 N times
 hifile seeks [XXX] SSS N read until finding string SSS,
 N times
 hifile skipline [XXX] N skip N lines (carriage returns)

In each of the cases, default N is always 1; if file XXX is not
specified within square brackets, it will use the active
(=default) one. When opening a new file, it automatically becomes
active (if you want another one active, you have to change it
explicitly).

KEY ADVICE FOR NON-PROGRAMMERS

A key advice for anyone trying to start developing scripts for TNT
(or any other type of programming, actually): it is necessary to
be very, very patient. Very. Very. And yet a little more.
Nothing comes out right the first time. Never, ever. It is
always necessary to try and try until things work like one wants.
If one keeps trying, eventually things get to work.

On the other (more rewarding) side, once one is over the
bump, progress can be made faster. Once a minimum of things have
been learnt, using scripts makes running simulations or doing
special calculations much easier, specially when compared to the
difficulty of programming equivalent tasks using C or some
standard programming language.

	READING AND EDITING TREES
	

