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Abstract

Global climate change, rising population growth, and the overuse of
agrochemicals have led to various problems, including soil degradation,
a decline in food production, and environmental issues affecting the
agricultural sector. To overcome these challenges, biofertilizers (partic-
ularly, those of mycorrhizal origin) have emerged as a sustainable and
eco-friendly alternative. Arbuscular mycorrhiza (AM) is an association
between plant roots and fungi from the subphylum Glomeromycotina,
found in approximately 72% of land plants, and is one of the most com-
mon and ancient types of symbiosis on Earth. AM fungi provide with
numerous benefits in exchange for plant photoassimilates. Although
AM fungi may represent a viable biofertilizer option, their use is signifi-
cantly limited due to various issues, ranging from their production to
field application. This review sheds light on the potential of AM fungi
as biofertilizers, analyzing their diverse benefits while also addressing
the limitations associated with their production and application for en-
hancing agricultural productivity.
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Resumen

El cambio climatico global, el aumento de la poblacién y el uso exce-
sivo de productos agroquimicos han dado lugar a diversos problemas,
como la degradacién del suelo, la caida de la produccién de alimentos
y cuestiones medioambientales que han arrinconado al sector agricola.
Para superarlos, los biofertilizantes, en particular los micorricicos, han
surgido como una alternativa sostenible y respetuosa con el medio am-
biente. La micorriza arbuscular (MA), una alianza entre las raices de las
plantas y los hongos del subfilo Glomeromycotina, que se encuentra
en aproximadamente el 72% de las plantas terrestres, es uno de los
tipos de simbiosis mas comunes y antiguos de la Tierra. Los hongos
MA proporcionan a las plantas multitud de beneficios a cambio de fo-
toasimilados vegetales. Aunque los hongos MA pueden ser una buena
opcion biofertilizante, su uso es muy limitado, ya que existen diversos
problemas que van desde su produccion hasta su aplicaciéon. Esta revi-
sion arroja luz sobre el potencial de los hongos MA como biofertilizan-
tes, analizando sus diversos beneficios y abordando al mismo tiempo
las limitaciones asociadas a su produccion y aplicacién para aumentar
la productividad agricola.

Palabras clave: Productividad agricola; agroquimicos; biofertilizantes; cambio
climatico global; micorrizas.

INTRODUCTION

Global climate change, the exponential rise in the human population, the
energy crisis, and the limited availability of natural resources have placed
immense pressure on the agricultural sector (Kinge et al., 2022). In addi-
tion, the long-term injudicious use of synthetic chemical fertilizers and
pesticides to raise agricultural productivity has given rise to many prob-
lems, such as deterioration of soil quality, which has resulted in a decrease
in food production (Naik et al., 2020; Fasusi et al., 2023) and has given rise
to many environmental problems, such as eutrophication of water bodies
(Bakhshandeh et al., 2017; Ammar et al., 2023). This, in turn, has led to the
degradation of ecosystems and has jeopardized trophic interactions (Bar-
ros-Rodriguez et al., 2024). This unprecedented situation has put various
stakeholders, such as governments, policymakers, scientists, and farmers, in
an alarming state (Stephenson et al., 2013). The growing awareness of the
environmental and ecological consequences of heavy reliance on synthetic
fertilizers has prompted a shift towards more sustainable agricultural prac-
tices to ensure food security for this expanding population while simulta-
neously conserving Earth’s natural resources, with biofertilizers emerging
as a viable, eco-friendly, sustainable, and cost-saving solution (Hunter et
al., 2017; Nosheen et al., 2021).
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Biofertilizers are formulations containing microorganisms or micro-
bial-derived molecules that enhance plant growth and productivity by ap-
proximately 10-40% (Shahwar et al., 2023; Ferreyra-Suarez et al., 2024).
Among biofertilizers, mycorrhizal biofertilizers have garnered significant
attention because of their ability to enhance plant nutrient acquisition and
overall growth performance (Kour et al., 2020; Ammar et al., 2023). Mycor-
rhizae, first reported by Frank (1885), is the mutualistic association between
fungal hyphae and plant roots in which there is a reciprocal exchange of
nutrients in the form of photo-assimilates like hexose sugars and lipids
from plants to fungi and mineral nutrients from fungi to plants (Kaiser et
al., 2014; Luginbuehl ez al., 2017). Mycorrhizal association can be catego-
rized into four types: arbuscular mycorrhiza (AM), ectomycorrhiza (EcM),
orchidioid mycorrhiza (OrM), and ericoid mycorrhiza (ErM) (Brundrett &
Tedersoo, 2018). Among these, arbuscular mycorrhiza, a symbiotic associ-
ation between plant roots and obligate biotrophic fungi of the subphylum
Glomeromycotina (Spatafora et al., 2016), is one of the most ancient and
widespread symbioses on Earth (Kenrick & Strullu-Derrien, 2014). It is
found in approximately 72% of terrestrial land plants (Genre et al., 2020),
ranging from bryophytes to angiosperms from a wide range of ecosystems
(Redecker et al., 2013), which played a pivotal role in allowing plants to
transition from an aquatic environment before the evolution of true roots
(Kenrick & Strullu-Derrien, 2014; Kuyper & Jansa, 2023). In contrast, ec-
tomycorrhizal associations are found in only 2% of land plants, primarily
those associated with temperate trees (Brundrett & Tedersoo, 2018). The
other two types of mycorrhizal associations, Orchidioid and Ericoid, were
restricted to specific plant families, Orchidaceae and Ericaceae, respectively
(Brundrett & Tedersoo, 2018).

In addition to their widespread occurrence and distribution across eco-
systems, arbuscular mycorrhizae provide plants with an array of benefits,
such as providing them access to immobile soil nutrients (Smith & Smith,
2011; Yu et al., 2022), promoting plant growth (Nadeem er al., 2014), and
helping plants adapt and survive under various abiotic (Begum et al., 2019)
and biotic stresses (Dey & Ghosh, 2022). They also improve soil structure
through soil aggregation (Gosling et al., 2010) and mediate communication
between plants through a Common Mycorrhizal Network (CMN) (Walder
et al., 2012; Heklau et al., 2021) (Fig. 1). In addition, they provide various
ecosystem services, such as the breakdown of organic matter (Powell &
Rillig, 2018), maintenance of belowground microbial diversity, and regu-
lation of plant community diversity (Van Der Heijden et al., 2015; Fall et
al., 2022). Thus, they have huge potential to be harnessed as a sustainable
biofertilizer option for boosting agricultural productivity, with the potential
to reduce reliance on synthetic fertilizers and pesticides while improving
plant growth and resilience. However, they remain underutilized owing to
inherent challenges associated with mass production, the risk of contami-
nation, the need for skilled labour (Gianinazzi & Vosatka, 2004; Madawala,
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Fig. 1. Benefits provided by AM (Arbuscular Mycorrhizal) fungi to plants. Common My-
corrhizal Network (CMN).

Fig. 1. Beneficios que aportan los hongos MA (micorrizas arbusculares) a las plantas.
Red comin de micorrizas (CMN).

2021), and conventional agricultural practices, such as the application of
agrochemicals, tillage, and crop rotation, which disrupt mycorrhiza devel-
opment (Brito et al., 2012; Bakhshandeh ez al., 2017). Among mycorrhizas,
arbuscular mycorrhiza (AM) will be considered in this review, as they are
found inclusively in all habitats and form symbiosis with nearly 72% of
terrestrial land plants, whereas ectomycorrhizae associate with only 2% of
land plants, mostly with trees found in forests of temperate regions (Brun-
drett & Tedersoo, 2018).

This review elucidates the potential of arbuscular mycorrhizal (AM)
fungi as biofertilizers by discussing the numerous benefits they offer. Fur-
thermore, this paper highlights the various challenges that may arise in the
application of AM fungi as biofertilizers intended to enhance agricultural
productivity.
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ADVANTAGES

The symbiotic association between plants and mycorrhizae provides the
plants with an array of benefits and services that promote their growth
and, at the same time, help them to cope with various stresses, which are
discussed below.

Facilitation of nutrient uptake

Mycorrhizal colonization induces changes in the morphological characteris-
tics of plant roots that are crucial for hosting mycorrhizal structures within
the cells and enhancing nutrient uptake and accumulation by mycorrhizal
plants (Neumann & George, 2010). The morphological modifications in
the plant root system triggered by mycorrhizal colonization include an
increase in total root length, a change in root-shoot ratio, an increase in
root branching, and an increase in the number of root tertiary branches
(Vierheilig et al., 2008). Along with these root modifications, the hyphae of
mycorrhizal fungi have the capacity to expand beyond the root surface by a
distance greater than 10 cm (Jakobsen et al., 1992). These hyphae are very
thin, with an average diameter of 3 to 4 wm, which is much smaller than the
finest root hairs, which have an average diameter of 10 um (Johansen et al.,
1993); thus, they are able to extend their growth into the tiniest micropores
of soil, which enhances their nutrient absorption efficiency (Bennett &
Groten, 2022). Altogether, the root modifications induced by AM fungi and
the AM hyphae form an extensive nutrient-absorbing network that expands
the root zone absorption area by 10% to 100% (Etesami et al., 2021) that
stretches beyond the nutrient depletion zones that form around roots in
the rhizosphere (The narrow zone of soil surrounding plant roots), which
enables the AM-colonized roots to access a larger volume of the soil than
roots that are not colonized by AM fungi (Cavagnaro et al., 2015). AM also
promotes the expression of phosphate transporters (PTs) in various host
plants, including StP7T3 in potato (Rausch et al., 2001), MtPT4 in Medicago
truncatula (Harrison et al., 2002), and OsPT11 in rice (Paszkowski et al.,
2002). These transporters play a critical role in facilitating the uptake of
phosphate released by AM fungi at the symbiotic interface into plant cells
(Wang et al., 2017). In addition to phosphate transporters, plant ammonium
transporters such as GmAMT4.1 and ATM2;3 in soybean and Medicago are
induced by the presence of the fungus within arbuscule-containing cortical
cells in the roots (Wang et al., 2017).

Mycorrhizal fungi secrete enzymes, like acid phosphatases and pro-
teases, which facilitate the solubilization of both organic and inorganic
phosphorus compounds in the soil (Miransari et al., 2009). This enzymatic
activity enhances the bioavailability of phosphorus, thereby improving the
availability of phosphorus to the plant host (Samantaray et al., 2024).
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Some mycorrhizal fungi produce siderophores (Low molecular weight
organic compounds that have a high affinity for ferric ions) that complex
iron and oxalate to increase potassium absorption from the soil, resulting
in improved plant nutrition (Lindahl et al., 2007).

Improvement of water absorption capacity

Mycorrhizal hyphae are very thin, usually having a diameter of 2-5 um,
which is approximately two times smaller than plant roots, which have
an average diameter of 10-20 um, which allows them to transport water
through small soil cavities inaccessible to plant roots (Diagne et al., 2020).
In addition, the hyphal tips are also hydrophilic, which enhances the trans-
port of water from the soil to the plant cells (Miransari, 2011).

AM fungi also produces glomalin, which is a glycoprotein containing
30—-40% carbon compounds that is deposited on the soil particles and holds
the soil particles together, forming stable soil aggregations that improve
the water holding capacity of soil and protect the soil from desiccation
(Verbruggen et al., 2012; Sharma et al., 2017).

Mycorrhizal fungi also induce the expression of plant aquaporin genes
in mycorrhizal roots, which encode integral membrane transporters that
transport water, signalling molecules, and ions through cell membranes
(Santander et al., 2021). Aquaporins enhance the water absorption capacity
of plants and improve their tolerance to drought stress. Thus, AM fungi
improves plants resilience to drought stress through multilayered, con-
trolled protection mechanisms.

Enhancement of growth and yield of crops

Mycorrhizal symbiosis plays a significant role in enhancing the productiv-
ity and quality of tropical agricultural crops, particularly in regions where
phosphorus deficiency is prevalent in the soil (Hildermann ez al., 2010).
Nziguheba and Smolders (2008) stated that 75% of the phosphorus applied
to crops is not utilized by plants. Zea mays and flax are very dependent on
AM fungi to meet their primary phosphorus requirements (Bai ez al., 2003;
Thompson et al., 2013). AM fungi inoculation can provide up to 90% of
plant phosphorus and 20% of plant nitrogen due to the hyphal network in
the soil formed after symbiotic associations with the host plant (Johnson et
al., 2012). Most of the major agricultural crops are mycorrhizal hosts and
increase the inoculum potential of the soil and colonization of future crops
(Schliemann et al., 2008). AM fungi have a widespread distribution, and
their use in agroecosystems as mycorrhizae-based inoculants is increasing
(Igiehon & Babalola, 2017). In the case of potatoes, AM inoculation was
observed to increase the total crop yield by 9.5%.
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When AM fungi inoculant (Rhizophagus irregularis) was applied to po-
tatoes over a period of four years in North America and Europe under real
field conditions and showed a highly significant increase (42.2 tons/ha)
in potato yield compared to non-inoculated controls (38.3 tons/ha) (Hijri,
2016). AM fungi also contributes to enhancing crop yield in rainfed agri-
cultural systems by promoting drought resistance in host plants, which is
particularly important in mitigating yield losses attributed to phytopatho-
gens and herbivores (Dowarah ez al., 2022).

Furthermore, AM fungi have been engaged in large-scale field pro-
duction of maize (Sabia et al., 2015). The inoculation of the AM fungus
Rhizophagus rregularis with the cotton cultivar Lumian No. 1 reduced the
requirement of fertilizer application in the field (Gao et al., 2020). Thus,
AM fungi possess a considerable potential for enhancing the yield of crops.

A positive relationship between mycorrhizal spore population and fruit
yield (number and weight of fruits) has been observed in various fruit trees
(Bona et al., 2017). Zeng et al. (2014) observed increased levels of sugars,
organic acids, vitamin C, flavonoids, and minerals in citrus fruits due to
Glomus versiforme, resulting in improved quality. The inoculation of Glomus
macrocarpum, G. coledonicum, and Acaulospora sp. resulted in enhanced plant
height, stem diameter, and biomass in trifoliate and troyer oranges (De
Souza, 2000). Inoculation with Gigaspora rosea and Glomus mosseae enhanced
the growth of different grape rootstocks and cultivars compared to unin-
oculated plants (Linderman & Davis, 2001). Arbuscular mycorrhizal fungi
also increased the yield and productivity of apple trees when plants were
co-inoculated with phosphate-solubilizing bacteria (Aslantas et al., 2007).

Contributes to soil sustainability

Arbuscular mycorrhizae are an essential component of the pedosphere that
regulate important soil processes and are considered to have immense po-
tential for improving soil sustainability (Powell & Rillig, 2018; Zhang et
al., 2024). AM fungi contribute to soil sustainability by regulating three
major factors: the structure of the soil, physiological processes in plants,
and ecological dynamics (Fall ez al., 2022).

Mycorrhizal fungi form a large amount of mycelia in the soil, which
continuously regenerates and forms a matrix that wraps and interconnects
soil particles, improving the stability of soil aggregates, minimizing soil
compaction, and improving the water-holding capacity of soil (Chen et al.,
2018). Mycorrhizal fungi also secrete a negatively charged, hydrophobic,
and thermotolerant glycoprotein, glomalin (Fall et al., 2022). Glomalin acts
as a glue that binds soil particles and stabilizes soil aggregation (Lehmann
et al., 2020). Furthermore, the hydrophobic nature of glomalin provides
soil aggregates with water resistance. Additionally, glomalin is slowly bio-
degradable by soil microorganisms (Hu ez al., 2019).
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Together, the formation of soil aggregates by the enmeshment action of
hyphae and the increase in their stability by glomalin minimize the risk of
soil compaction and increase the water-holding capacity of the soil, which
results in reduced soil erosion, nutrient leaching, and denitrification, there-
by improving soil fertility (Pellegrino et al., 2020). The mycelial network, in
addition to forming stable soil aggregates, also contributes to the formation
of soil organic matter after death (Hawkins ez al., 2023).

Thus, AM fungi participate in various types of essential soil functions,
such as nutrient cycling (Powell & Rillig, 2018; Frey, 2019), reducing soil
nutrient loss by minimizing nutrient leaching from the soil (Cavagnaro et
al., 2015), and improving the soil structure by producing a hydrophobic gly-
coprotein glomalin (Leifheit et al., 2014). AM also regulates various phys-
1ological processes in plants, such as enhancing their nutrient acquisition
capacity from the soil (Rouphael ez al., 2015), modulating phytohormone
levels in plants, and reprogramming the secondary metabolism of plants
(Rivero et al., 2015). AM also influences the ecological dynamics of soil by
recruiting beneficial soil microorganisms, such as phosphate-solubilizing
bacteria (PSB), nitrogen-fixing bacteria, and plant growth-promoting rhi-
zobacteria (PGPR), to the mycorrhizosphere (The zone of soil surrounding
the plant roots colonized by mycorrhizal fungi) (Yu et al., 2022).

Strengthens plant immunity to biotic stress

AM induces disease control by both indirect and direct means. Indirectly
through nutrition improvement; synthesis of plant hormones (Song et al.,
2015) and competing with other harmful microbes on the root surface and
within the root. AM fungi also produce some antifungal (Bencherif et al.,
2019) and antibacterial compounds (Kaur & Sussella, 2020) and toxins that
act against pathogenic organisms (Wang et al., 2018).

AM fungal symbiosis directly inhibits pathogens by mycorrhiza-in-
duced resistance (MIR) (Nguvo & Gao, 2019) by creating systemic pro-
tection against a wide range of pathogens. MIR includes characteristics
of both systemic acquired resistance (SAR), which occurs after pathogen
infection in plants, and induced systemic resistance (ISR), which occurs
following root colonization by non-pathogenic rhizobacteria (Cameron et
al., 2013). MIR activates both pathogen-specific and broad-range defence
genes (Fiorilli et al., 2018) to produce enzymes and pathogenesis-related
(PR) proteins (Sanmartin et al., 2020).

AM fungi are active against different types of nematodes (Da Silva
Campos, 2020), bacteria (Sanmartin et al., 2020), viruses (Aseel et al., 2019),
and fungi (Song ez al., 2015) in different hosts, though the protective effects
vary with AM and host species or other conditions.
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Enhancement of abiotic stress tolerance

Water stress, caused by drought and salinity, is one of the main abiotic
stresses that impact plant growth and productivity. The symbiosis between
plant roots and AM fungi is a common strategy for adapting to water stress
(Brachmann & Parniske, 2006). Mycorrhizal fungi employ various strat-
egies to sustain host vitality during water stress. Water stress decreases
the turgor pressure and water potential of plant cells, which results in the
formation of reactive oxygen species like superoxide and hydroxyl radicals
(Laxa et al., 2019). As mycorrhizal hyphae can explore a large volume of
the soil, they enhance plants water absorption, which improves turgor po-
tential, stomatal conductance, and hence elevates transpiration rate (Augé
et al., 2015). AM colonization also improves osmotic balance by inducing
accumulation of osmo-protectants such as proline, polyamines, glycine be-
taine, non-structural carbohydrates, and inorganic solutes like K+, Ca2+,
and Mg2+ (Baslam & Goicoechea, 2012; Yooyongwech et al., 2013) inside
plant cells, which maintains the turgor pressure and protects plant cells
from the adverse effects of water stress (Griimberg et al., 2015).

Under salinity stress conditions, AM fungi enhance the uptake of
nutrients like phosphorus (P), nitrogen (N), potassium (K), zinc (Zn),
and copper (Cu) and maintain ionic homeostasis (Hanin et al., 2016). AM
fungi also enhance the levels of the abiotic stress hormone abscisic acid
(ABA) in plants to cope with the detrimental effects of water and salinity
stress (Martin-Rodriguez et al., 2016). ABA regulates transpiration rates,
stomatal movements, root hydraulic conductivity, and the expression of
aquaporin-encoding genes (Ouledali ez al., 2019). ABA triggers stomatal clo-
sure, which in turn reduces transpiration and minimizes water loss during
drought stress (Chitarra et al., 2016). AM fungi also augment antioxidant
activities to defend against damage by reactive oxygen species (ROS) and
promote photosynthesis to minimize the detrimental effects of salts on the
growth and development of plants (Evelin ez al., 2009). Crop plants inoc-
ulated with AM fungi have been reported to enhance growth and yield,
while mitigating osmotic and ionic imbalances to normal levels, allowing
crops to thrive under salinity stress (Hanin et al., 2016).

All these adjustments by AM fungi improve plant resilience to various
abiotic and biotic stresses, which improves plant growth and ultimately
their productivity. Thus, AM can be utilized as a bioinoculant in the soil,
which can maximize the output without compromising soil health while
simultaneously ensuring soil sustainability.

HINDRANCES IN APPLICATION

Despite the multitude of benefits offered by mycorrhiza, their widespread
adoption and successful implementation as biofertilizers in modern agri-
culture face several challenges (Fig. 2).
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Fig. 2. Challenges associated with the use of arbuscular mycorrhiza as a biofertilizer in
agroecosystems.

Fig. 2. Desafios asociados al uso de micorrizas arbusculares como biofertilizante en
agroecosistemas.

High nutrient content in soil

Under nutrient-poor conditions in the soil, plant roots release strigolac-
tones (A family of carotenoid-derived phytohormones that promote seed
germination in parasitic plants and facilitate the establishment of symbiosis
between plants and AM fungi) into the soil, which induces the germina-
tion of AM spores and stimulate hyphal branching (Waters et al., 2017).
The AM fungi in response release myc factors that are perceived by plant
receptors, resulting in the induction of the common symbiotic pathway
leading to the establishment of symbiosis (Zhang et al., 2015). However, in
agroecosystems with high fertilizer input, the level of nutrients, especially
phosphorus (P), becomes high, and plants can take up phosphorus (P) from
the soil without seeking any help from the AM fungi, and the symbiotic
association transforms to a parasitic one in contrast to mutualism under
low soil N and P levels (LLopez-Raez et al., 2017). Therefore, it is no longer
feasible for plants to remain in this association, as there is a carbon cost;
thus, the allocation of carbohydrates and lipids to AM fungi is reduced
(Qin ez al., 2024).
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Additionally, the release of strigolactones from plant roots decreases
(Lopez-Raez et al., 2011). Finally, plants also downregulates the expres-
sion of phosphate transporter (PT) genes (Sawers et al., 2017). As a result, the
AM fungal colonization and sporulation are reduced (Tiamtanong et al.,
2015). In addition to phosphorus (P), the mycorrhizal community is greatly
affected by chronic nitrogen deposition. Many nitrogen fertilizers have
been reported to decrease colonization in both field and pot experiments
(Getman-Pickering et al., 2021). Nitrogen fertilization alone or in combi-
nation with phosphorus disrupts AM symbiotic efficiency. Potassium (K)
more than the natural soil K content decreased mycorrhizal colonization
in maize (Ardestani et al., 2011).

Application of agrochemicals

Agrochemicals (fungicides, pesticides etc.) are now integral part of tech-
nology dependent modern conventional agriculture as most high yielding
crops are more susceptible to diseases than their wild genotypes. System-
ic fungicides have selectivity and specificity for certain pathogens while
non-systemic fungicides are broad spectrum and Kill all organism exposed
to these. Common non-systemic fungicides like pentachloronitrobenzene
(PCNB), thiram, fotran, arsan, langstan, Chlorothalinol, Captapol, chloroneb,
metaxyl and ethazole are highly toxic; while Captan, Mylone, Vapram and
Tolax are moderately toxic to mycorrhizal fungi. Daconil, Sodium azide,
terrazole, captain, and copper sulphate may favour AM activity and de-
velopment at low doses under specific environmental conditions (Vyas &
Vyas, 2000).

Systemic fungicides are more detrimental to AM fungi as they get
accumulated inside the roots (Jin et al., 2013). As systemic fungicides are
mostly fungi static, they have less effect on spore germination and hyphal
growth, but they affect infection, colonization and sporulation. Benomyl,
Tridemorph, Triforine, Ethirimol, Etridiazole, Thiophanate methyl, Thiabendazole,
Thiademifom and Carboxin show detrimental effects on the development of
AM in the root (Wang et al., 2018). Almost all non-systematic fungicides
adversely affect AM and are retained in soil (Ghosh ez al., 2024).

Selection and preparation of mass culture

The primary challenge in producing an AM fungi inoculum is the obli-
gate symbiotic nature of AM fungi, which requires a host plant to grow
and complete its life cycle. Thus, they cannot be cultivated in pure cul-
ture without their host plants (Sile ez al., 2015). Consequently, their prop-
agation must include a cultivation phase with host plants maintained in
fields, greenhouses, or growth chambers. This is labour intensive, costly,
and at the same time requires considerable time and space (Gianinazzi &
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Vosatka, 2004). Additionally, AM fungal inoculum is a combination of soil
and AM propagules; therefore, these inocula cannot be entirely free from
contamination with pathogens and weedy seeds (Kumar ez al., 2017). Fur-
thermore, the soil makes AM inocula bulkier, and their transport becomes
more challenging and expensive (Ceballos et al., 2013). Apart from these
evident limitations associated with the production of AM inocula on a large
scale, there are additional obstacles like lack of infrastructure for inoculum
production, storage, and skilled labour, as well as lack of a suitable carrier
material, short shelf life, and inconsistency in the inoculum (Mukhongo
et al., 2016). Additionally, there is a lack of quality control protocols for
AM fungal inoculum production; thus, the species listed in commercial
products may not be entirely accurate (Hart et al., 2018). Again, not all AM
fungi species may be suitable for all hosts, soil types, or climates (Jansa et
al., 2014). Thus, screening is necessary.

Conventional agricultural practices like fallowing land,
rotation with non-host plant and tillage

Conventional agricultural practices, aside from the application of agrochem-
icals, such as tillage and crop rotation, which inhibit the development of
mycorrhizae, particularly in topsoil layers, are two commonly encountered
challenges that prohibit the effective utilization of mycorrhizae as a biofer-
tilizer in agroecosystems.

As an obligate symbiont, prolonged fallowing of land devoid of veg-
etation or with non-host vegetation leads to the depletion of arbuscular
mycorrhizal (AM) propagules in the soil as AM spores are unable to ger-
minate and proliferate in the absence of a host. Similarly, the cultivation of
non-host crops, such as those belonging to the Brassicaceae family, which
release glucosinolates into the soil, adversely affects AM propagules. Upon
their release, glucosinolates decompose into isothiocyanates, which are anti-
microbial compounds that further reduce the prevalence of AM propagules
in the soil, even following the rotation with host plants (Kirkegaard &
Sarwar, 1998; Ghosh et al., 2004).

Intensive tillage disrupts the hyphal networks of mycorrhizae within
the soil (Feilinezhad et al., 2022) which can selectively affect various arbus-
cular mycorrhizal fungi (AMF) groups based on their life and colonization
strategies, either promoting or impairing specific groups, leading to a 40%
reduction in AM fungal diversity (Brito et al., 2012). Furthermore, my-
corrhizal root colonization consistently demonstrates lower levels under
tillage conditions compared to no-tillage environments (Castillo, 2006).
During the initial stages of colonization, the direct impacts of conventional
tillage systems are attributed to the physical disruption of the extraradical
mycelium network, resulting in a slowdown of symbiotic efficiency. This
disruption hampers AM activity related to nutrient and water uptake, glo-
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malin-associated soil aggregate formation (Brito et al., 2012), and biopro-
tection against soil pathogens (Patanita ez al., 2020).

Thus, conventional agricultural practices, aside from the application
of agrochemicals, such as tillage and crop rotation, can inhibit the devel-
opment of mycorrhizae in different agroecosystems. However, adopting
practical alternatives such as utilizing organic fertilizers (manures and com-
post) and slow-release mineral fertilizers (like rock phosphate) (Cavagnaro,
2014), implementing reduced tillage (Ghorui ez al., 2024), and shortening
the fallow period through crop rotation with mycorrhizal-dependent cover
crops such as Vicia villosa Roth. and Trifolium spp. instead of non-mycorrhi-
zal hosts like Brassicaceae can stimulate arbuscular mycorrhizal (AM) fungi
in the field (Njeru et al., 2015). Furthermore, the application of fungicides
that do not negatively affect mycorrhizal fungi can lead to an increase in
AM propagules and their species diversity (Rouphael ef al., 2015).

Methods of plant inoculation with mycorrhizal fungi

Inoculating plants with AM fungi employs advanced techniques that can
significantly enhance plant health and productivity. These methods can be
broadly categorized as follows.

Seed inoculation.— This method consists of coating seeds with a slurry
of AM spores, ensuring that upon germination, the seeds are immediately
exposed to the AM fungi (Kafle et al., 2019).

Direct root inoculation.— This approach involves dipping the roots of
seedlings into a suspension of AM spores during transplanting, thereby
establishing direct contact between the AM fungi and the root system (Eu-
lenstein et al., 2017).

Soil inoculation.— This strategy involves broadcasting granular or pow-
dered inoculum over the soil surface at the time of tillage or planting,
making it suitable for large-scale agricultural operations where direct root
inoculation may not be feasible (Aliyu et al., 2019).

While these methods demonstrate potential for enhancing soil health
and agricultural productivity, challenges persist in standardizing these
practices.

Dual applicationof AM fungi and plant growth
promoting bacteria (PGPB)

The simultaneous application of Arbuscular Mycorrhizal (AM) fungi and
Plant Growth Promoting Bacteria (PGPB), represents an effective ecological
strategy to enhance plant performance and soil health compared to single
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inoculation (Feng er al., 2023). AM fungi colonize the roots of terrestrial
plants; on the other hand, PGPB colonizes the rhizosphere. The combina-
tion of these two groups can lead to improved plant performance by provid-
ing numerous benefits, such as nitrogen fixation, phosphate solubilization
and mineralization, phytohormone production, and enhanced tolerance to
various biotic and abiotic stresses (Wahid ez al., 2022).

The mechanism behind this synergistic effect is attributed to several
factors, including PGPB enhancing AM spore germination and hyphal
growth, which leads to more efficient mycorrhizal colonization (Sagar et al.,
2021). In return, the PGPB receive nourishment in the form of carbon-rich
exudates from the AM fungi. This mutual enhancement results in a more
robust root system that better absorbs nutrients and water, promoting plant
growth and improving performance under various stresses (Wahid et al.,
2022).

The synergistic effect of dual inoculation with AM fungi and PGPB
has been validated by several scientific studies. For example, in two wheat
(Triticum aestioum) cultivars, HD-3086 and HD-2967, the co-application
of Bacillus subtilis CP4 and the AM fungi Glomus fasciculatum significantly
increased plant biomass and yield compared to single inoculation and un-
inoculated controls (Yadav et al., 2021). Additionally, inoculating a straw-
berry variety (Fragaria ananassa var. Selva) with a consortium of AM fungi
(Rhizophagus intraradices, Glomus aggregatum, G. viscosum, Claroideoglomus
etunicatum, and C. claroideum) and Pseudomonas fluorescens Pf4 resulted in
earlier flowering and fruiting, as well as increased yield and nutritional
content (Bona et al., 2015). In Melissa officinalis L., dual inoculation with
the AM fungi Glomus mosseae and the PGPB Azospirillum brasilense Sp245
promoted plant growth and yield under water deficit conditions (Gorgi et
al., 2022). El-Sharkawy et al. (2022) found that inoculating Rhizophagus ir-
regularis with the bacterium Streptomyces viridosporus HH1 improved growth
parameters and induced defence responses in pea (Pisum satioum L.) against
infection of Fusarium oxysporum f.sp. pisi.

CONCLUSION

The use of mycorrhizae as biofertilizers is a cost-effective strategy for sup-
plying essential nutrients and water and enhancing resilience to various
environmental stresses, thereby contributing to sustainable, eco-friendly
production that minimizes the use of agrochemicals and reduces envi-
ronmental and human health risks. To fully harness the potential of AM
fungi in enhancing the productivity of agroecosystems, it is essential to
troubleshoot the negative effects of conventional agricultural practices on
AM fungi, soil quality, ecosystem functioning, and human health. There-
fore, to maximize the benefits of AM fungi, it is essential to develop an
integrated management system, which is a comprehensive strategy that
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combines multiple agricultural practices to increase the number, variety,
and functioning of AM fungi. This enhancement aims to improve their
symbiotic interaction of AM fungi with their host plants, thereby optimiz-
ing mycorrhizal advantages, leading to improved crop performance and
agroecosystem sustainability while remaining within economic boundaries.

To achieve such a sustainable system, soil management practices like
no-tillage farming or reduced tillage should be adopted, and cover crops
should be implemented to promote soil aggregation and increase organ-
ic matter content in fields, creating a more favourable environment for
mycorrhizal fungi, which will facilitate their growth and colonization of
plant roots within agroecosystems. Besides soil management practices, nu-
trient management strategies should include the judicious application of
fertilizers tailored to the specific needs of the crops and the existing soil
nutrient levels to mitigate the suppression of mycorrhizal activity caused
by excessive fertilization. Also, selecting crop varieties known to be highly
responsive to mycorrhizal colonization is crucial to ensure that plants can
successfully capitalize on the benefits provided by AM fungi.

An integrated management system should also incorporate strategies to
introduce beneficial mycorrhizal fungi populations in the soil, taking into
account the broader ecological context of the agroecosystem. This can be
achieved by exploring native AM fungi and plant growth-promoting bac-
teria instead of relying on commercially available bioinoculants, as native
populations are pre-adapted to the environment and can establish them-
selves better in the soil without promoting weed growth, which is often a
concern with commercial bioinoculants (Duell et al., 2022). Furthermore,
fostering collaborative partnerships between government, researchers, and
farmers is vital to facilitate the exchange of knowledge and best practices
related to mycorrhizal management.

Additionally, investment in research and development for enhancing
the infrastructure for propagule production and building a skilled work-
force in this domain are critical to ensure their widespread adoption and
success.
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