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Botánica aplicada: radiación UV-B para la obtención de 
brotes de quinua enriquecidos en compuestos fenólicos, 
con probables usos en protectores solares naturales o 
como alimentos funcionales

ABSTRACT

The objective was to evaluate the use of a microgreen system and very short 
UV-B radiation dose to obtain plant biomass as a source for phenol-en-
riched extracts with probable cosmetic and/or food uses. Quinoa seedlings, 
a native species of the Andes, of two different ages were used. The seedlings 
were irradiated with different doses of UV-B and then evaluated by quan-
tifying indicators of oxidative damage. Also, the contents of phenolic com-
pounds, photosynthetic pigments, antioxidant capacity, and sun protection 
factor were determined. The results showed that the youngest seedlings 
responded better to short UVB doses, increasing the content of soluble 
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and insoluble phenols, without showing oxidative damage. These results 
were correlated with the greater antioxidant power of the extracts and an 
intermediate sun protection factor. We conclude that this species, grown in 
a microgreen system, is a promising alternative to obtain phenol-enriched 
extracts with possible use in formulations of natural sunscreens. In this 
sense, these results can serve as a starting point for optimization studies 
through the response surface methodology.
 

Keywords: Microgreen; phenolics; quinoa; sunscreen; UB-V.

RESUMEN

El objetivo fue evaluar el uso de un sistema de microgreen y dosis muy 
cortas de radiación UV-B para la obtención de biomasa vegetal como fuente 
de extractos enriquecidos en compuestos fenólicos con probables usos cos-
méticos y/o alimentarios. Se utilizaron plántulas de quinua, especie nativa 
de los Andes, de dos edades diferentes. Las plántulas fueron irradiadas con 
diferentes dosis de UV-B y luego evaluadas cuantificando indicadores de 
daño oxidativo. Además, se determinó contenido de compuestos fenólicos, 
pigmentos fotosintéticos, capacidad antioxidante y factor de protección so-
lar. Los resultados mostraron que las plántulas más jóvenes respondieron 
mejor a dosis cortas de UVB, aumentando el contenido de fenoles solubles e 
insolubles, sin presentar daño oxidativo. Estos resultados se correlacionaron 
con el mayor poder antioxidante de los extractos y un factor de protección 
solar intermedio. Concluimos que esta especie, cultivada en un sistema de 
microgreen, es una alternativa prometedora para la obtención de extractos 
enriquecidos en compuestos fenólicos con posible uso en formulaciones 
de protectores solares naturales. En este sentido, estos resultados pueden 
servir como punto de partida para estudios de optimización mediante la 
metodología de superficie-respuesta.
 

Palabras clave: Fenólicos; microcultivo; pantalla solar; quinoa; UV-B.

INTRODUCTION

Ultraviolet radiation (UVR) reaching the earth is largely composed of UV-A 
radiation and to a lesser extent UV-B. Although UVR is known to vary 
greatly at the Earth’s surface for various reasons (Kerr, 2005), in the last 
decades, the ozone layer has been substantially damaged because of several 
anthropogenic activities, which increased the UVR reaching the Earth. 
UV-B radiation is considered 1000 times more dangerous than UV-A radi-
ation because it is genotoxic and causes skin burns (Brenner and Hearing, 
2008; Lorigo et al., 2018). Overexposure to UVR increases the production 
of free radicals that produce alterations in macromolecules such as lipids, 
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proteins, and nucleic acid or induce activation of responsible enzymes of 
cleavage of extracellular matrix components (Orqueda et al., 2021). In this 
sense, topical sun protective cosmetics, both sunscreens, pre- and post-
sun, have been intensively developed and produced to protect human skin 
against damages or pathologies associated with solar irradiation. Most sun 
protection cosmetics contain synthetic chemical substances, such as tita-
nium dioxide nanoparticles, whose use has been questioned since adverse 
effects on cellular oxidative stress (Falck et al., 2009; Krishnaiah et al., 
2009; Grande and Tucci, 2016; Ferraro et al., 2020). In addition, many of 
the components of sunscreens have been detected in natural water sources 
and are currently considered emerging contaminants (Kim et al., 2011; 
Simonin et al., 2016; Prakash and Anbumani, 2021).

In this context, plant-derived bioproducts have gained considerable 
attention as skin-protecting agents. Currently, some studies have focused on 
the use of plant extracts rich in secondary metabolites, such as polyphenols 
and flavonoids, which show antioxidant activity. Thus, they can act on 
free radicals generated by exposure to UV-B radiation, reducing the prob-
ability of the occurrence of cancer or cell aging (Birt et al., 1997; Takshak 
y Agrawal, 2019; Lima-Cherubim et al., 2020; Pavelkova et al., 2020). In 
addition, phenolic compounds have also been attributed anti-inflammatory 
and antimicrobial functions in several biological systems making them 
excellent candidates to be added to cosmetic formulations (Ribeiro et al., 
2015; Lima-Cherubim et al, 2020; Salas et al., 2020; Orqueda et al., 2021; 
Orqueda et al.,2022).

During evolution, plants have developed the ability to produce an 
enormous number of secondary metabolites, which are essential for their 
interaction with the environment, their reproductive strategies, and de-
fense mechanisms (Cheynier et al., 2013; Li et al., 2018). For this reason, 
native plants from adverse environments have high contents of second-
ary metabolites, which help them survive in such environments. Quinoa 
(Chenopodium quinoa) is a species native to the Andean region of Bolivia, 
Ecuador, Chile, and Argentina. Due to its location, it is adapted to grow 
up to 3500 m above sea level, so it has developed different strategies to 
tolerate various adverse conditions, such as high levels of UV-B radiation, 
low temperatures, drought, etc. Among these strategies, it can mention 
the synthesis of phenolic compounds that act like screens and antioxidant 
molecules. In this sense, Hilal et al. (2004) studied the effect of UV-B radi-
ation in quinoa seedlings, and they demonstrated an increase of absorbent 
phenolic compounds in the cotyledon epidermis. Also, other studies have 
shown that the synthesis of phenolic compounds varies with the dose of 
UV-B received and with the age of the organ studied (Huarancca Reyes et 
al., 2018; Wittayathanarattana et al., 2022). The studies carried out by these 
authors include plants over one month old subjected to prolonged treat-
ments (4 to 16 hours) with UVB and white LED lamps, simultaneously. In 
this sense, to achieve efficient production, the use of microgreens could be 
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a profitable option to obtain sufficient biomass to produce plant extracts 
enriched in phenolic compounds through controlled stimulation of pro-
tective mechanisms against stress conditions. Likewise, UVB-stimulated 
quinoa sprouts could serve as a functional food option, with higher content 
of phenolic compounds (Al-Qabba et al., 2020; Ng and Wang, 2021). The 
objective was to evaluate the use of a microgreen system and very short 
doses of UV-B radiation to obtain plant biomass as a source of extracts 
enriched with phenolics or as a food alternative.

MATERIALS AND METHODS

Plant material and light treatments

Quinoa seeds (Chenopodium quinoa) were provided by INTA of San Juan, 
Argentina. Seeds were germinated and grown in plastic boxes (30 cm x 
15 cm x 3 cm) containing vermiculite moistened with tap water. The ger-
mination and growth plants were carried out in a growth chamber with 
controlled conditions of temperature (25 ±1°C), and a photoperiod of 12 
h (PAR 400–700 nm of 180 µmol/m/sec).

The UV-B radiation was supplied by two fluorescent lamps (UB-B-313, 
Q-Panel, Cleveland, OH) mounted horizontally 15 cm above the tops of the 
plants. Seven and ten days-old seedlings were irradiated with UV-B (4,12 
W/m2) to three doses: for 3, 10 or 30 minutes at the middle of the photo-
period (in the absence of PAR radiation). Seven and ten days correspond 
to the stage of greatest activity of the cotyledons prior to the beginning of 
senescence (Ruffino et al., 2008).

The irradiance at the plant level was determined with a radiometer 
(Series 9811, Cole-Parmer Instrument Co., Chicago, IL). To exclude UV-B 
radiation for control plants treated, the radiation was filtered through cel-
lulose acetate. Following irradiation, the seedlings were returned to initial 
growth conditions for 24 h. At 8 or 11 days, the samples of cotyledons were 
collected. The plant tissues selected did not show signs of chlorosis and/or 
morphological alterations and they were kept at -4° C (tissue fresh) until 
chemical determinations.

Extraction and determination of soluble phenolics (SP)
and insoluble phenolics (IP) 

Soluble phenolics (SP) were extracted according to Swain and Hillis (1959) 
with minor modifications. Briefly, samples of fresh cotyledons and true 
leaves (250 mg FW) were homogenized with 3 mL 96 % ethanol, incubated 
for 48 h at room temperature and darkness, and finally centrifuged at 3000 
g for 5 min. Supernatants were recovered and used for SP determination. 
Aliquots of supernatants (50 µl) were added to 0.2 mL (1:1 v/v) of Folin–
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Ciocalteu reagent and 1.95 mL of distilled water, then it was left to rest at 
room temperature for 2 min. Finally, 0.8 mL of 7.5 % Na2CO3 was added 
and incubated for 5 min at room temperature. The absorbance was read at 
760 nm. Precipitate from SP extraction was washed twice with 2 mL eth-
anol 96% and centrifugation at 3000 g for 5 min. Washed precipitate was 
dried at 37 °C for 48 h and used to obtain IP (cell wall-bound phenolics). IP 
extraction was adapted from Assabgui et al. (1993). Dried samples (20 mg) 
were hydrolyzed with 2 mL of 2 N NaOH in a water bath at 60 °C for 60 
min. The solutions were cooling and slowly acidified up to pH 2.0 with 5 
N HCl and extracted with ethyl acetate. After, ethyl acetate fractions were 
taken near dryness under a stream of N2 gas and dissolved in 0.5 mL of 96 
% ethanol. Insoluble phenolics were determined using the Folin–Ciocalteu 
reagent as described above. SP and IP concentrations were determined 
using a standard curve made with gallic acid and expressed as mg gallic 
acid equivalents (mg GAE/gFW).

Extraction and quantification of malondialdehyde
(MDA) 

The extraction and quantification of MDA, an indicator of lipid peroxi-
dation, was performed according to Du and Bramlage (1992) with modi-
fications. Cotyledon samples (0.25 g FW) were homogenized with 3 mL 
0,1% (w/v) trichloroacetic acid solution (TCA) and centrifuged at 12000 
g for 10 min. Resulting supernatants were used for MDA quantification. 
Briefly, supernatant aliquot (1 mL) was added with 1 mL of 0.5% (w/v) 
thiobarbituric acid in 20% (w/v) trichloroacetic acid. Resulting mixture 
was heated in boiling water for 25 min and quickly cooled in an ice bath. 
Finally, the mixture was centrifuged at 3000 g for 10 min and then the 
absorbance was read at 440, 532 and 600 nm. MDA concentration was cal-
culated using an extinction coefficient of 155 mM−1 cm−1 and expressed 
as µmol Eq MDA/g FW. 

Extraction and quantification of
photosynthetic pigments

Photosynthetic pigments (chlorophylls and carotenoids) were extracted 
according to the technique described by Chapelle et al. (1992). Cotyledon 
samples (0.20 mg FW) were homogenized with 2 mL of dimethyl sulfox-
ide and incubated for 12 h at 45°. Chlorophyll a and b and carotenoids 
contents were calculated from absorbances at 665, 649 and 480 nm using a 
spectrophotometer UV-visible (Hitachi U 2800-A, Japan). The tissue con-
centrations of photosynthetic pigments were determined by the equations 
of Wellburn (1994). 
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Total antioxidant capacity assay by ABTS
scavenging activity

 The antioxidant capacity of soluble phenols present in quinoa plants was 
determined according to the method described by Re et al. (1999). For the 
study, an ABTS•+ solution was diluted with ethanol to an absorbance of 
0.70 (± .02) at 734 nm and equilibrated at 30°C using a spectrophotometer 
(Biotek ELx808). Different volumes of extract of quinoa seedlings exposed 
or not to irradiation UV-B were reacted with 200 µl solution of radical 
ABTS•+ at room temperature. After 6 minutes from the start of the reac-
tion, the absorbance was measured at 734 nm.

The percentages of free radical scavenging activity were calculated and 
expressed as the percentage inhibition of the absorbance of the ABTS•+ 
solution as a function of concentration antioxidants. 

Determination of UV-B absorbing compounds

To determine the presence of UV-B absorbent compounds in cotyledon 
samples without or with irradiation UV-B, Mireki and Teramura (1984) 
technique was followed. For the extraction of absorbing compounds, 0.20 
mg fresh tissue was homogenized with 2 mL of acidified methanol (meth-
anol:water:HCl, 79:20:1) and incubated for 12 h at 45°. Subsequently, prior 
extraction of vegetal tissue, the absorbance of extracts was measured at 305 
nm. The results were expressed as A305/g WF.

Analysis Sun Protection Factor (SPF)

The ability of insoluble phenolics to filter UV-B radiation was measured 
in quinoa extracts according to the in vitro technique described by Sayre 
et al. (1979). Different concentrations of each extract (0.0125 to 0.2 µg IP/
mL) were prepared. The absorbance of solutions was measured at different 
wavelengths (λ) of UV-B radiation range (290-320 nm) with intervals of 5 
nm using a spectrophotometer. The SPF was calculated using an equation 
according to Borghetti and Knorst (2006).

RESULTS

Soluble (SP) and insoluble phenolics (IP)

The highest content of SP was obtained in seven days-old seedlings irradi-
ated with UV-B for 3 minutes, reaching a value of 2.25 ± 0.13 mg Eq GA/g 
FW (Fig. 1A). Interestingly, when ten days-old seedlings were irradiated 
with UV-B, regardless of dose, there were no significant differences between 
treatments. The values obtained were between 1.45±0.01 and 1.62±0.02 
mg Eq GA/gFW.
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On the other hand, a similar trend to IP was observed (Fig. 1B). The 
maximum concentration of IF was obtained in seven days-old seedlings 
irradiated with UV-B for 3 minutes, reaching a value of 3.01 ± 0.15 mg 
Eq phenolic/g FW. This value was significantly higher (67%) than the con-
centration of IF obtained in the control (1.51 ± 0.12 mg Eq phenolic/g 
FW). However, the other treatment did not show a significant difference 
compared with the control seedling without UV-B. 

Fig. 1. Effect of UV-B dose on the content of phenolic compounds in cotyledons of seven 
and ten-day-old quinoa seedlings. A) Soluble phenolics. B) Insoluble phenolics. Different 
letters indicate statistically significant differences (p < 0.05, Fisher’s post-test).

Fig. 1. Efecto de la dosis de UV-B sobre el contenido de compuestos fenólicos en co-
tiledones de plántulas de quinoa de 7 y 10 días. A) Compuestos fenólicos solubles. B) 
Compuestos fenólicos insoluble. Letras diferentes indican diferencias estadísticamente 
significativas (p<0.05, prueba de Fisher).
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Malondialdehyde content

Lipid peroxidation produces malondialdehyde (MDA), a secondary deriv-
ative of aldehyde, which indicates the presence of oxidative stress in plants 
under stress conditions. In seven days-old seedlings, no significant differ-
ence in MDA values was observed (Fig. 2). However, ten-day-old seedlings 
irradiated with UV-B for 3 minutes showed a significant increase in MDA 
content, reaching values of 131 ± 0.05 Eq MDA/g WF(p<0.05) which was 
64% higher than the control one.

Temporal evolution of phenolic compound
after UV-B irradiation

According to the results previously obtained, a new treatment was carried 
out to determine the response time that can induce a higher synthesis of 
phenolic compounds. Seven days-old seedlings were irradiated with UV-B 
for 3 minutes at the middle of the photoperiod and after irradiation, seed-
lings were maintained for 24 h or 48 h under control conditions. The seed-
lings maintained for 24 h presented the highest concentration of SP (2.49 
± 0.10 mg Eq GA/g WF) (Fig. 3A) while at 48 h the SP content decreased 
significantly with respect to the control (p<0,05).

Fig. 2. Content of malondialdehyde (MDA) in cotyledons of 7 and 10 days-old quinoa 
seedlings exposed to UV-B irradiation. Different letters indicate statistically significant 
differences (p < 0.05, Fisher’s post-test).

Fig. 2. Contenido de malondialdehído (MDA) en cotiledones de plántulas de quinoa de 7 y 
10 días expuestas a radiación UV-B. Letras diferentes indican diferencias estadísticamente 
significativas (p<0.05, prueba de Fisher).
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Regarding IP content, seedlings 24 h post-irradiation increased the 
production of these metabolites, reaching values significantly higher 
(2.04±0.019 mg Eq phenolic/g WF) than those of the control (0.88 ±0.04 
mg Eq phenolic/g WF). IP content after 48 h of irradiation decreased 50% 
approximately compared to 24 h (p<0.05) (Fig. 3B).

Fig. 3. Temporal evolution of the content of phenolics compounds in cotyledons of 
seven days-old quinoa seedling after UV-B irradiation. A) Soluble phenolics. B) Insoluble 
phenolics. Different letters indicate statistically significant differences (p < 0.05, Fisher’s 
post-test).

Fig. 3. Evolución temporal del contenido de compuestos fenólicos en cotiledones de 
plántulas de quinoa de 7 días luego de la irradiación con UV-B. A) Compuestos fenólicos 
solubles. B) Compuestos fenólicos insolubles. Letras diferentes indican diferencia estadísti-
camente significativas (p<0.05, prueba de Fisher).
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Content of photosynthetic pigments 

The content of chlorophyll a, b (Ch a, Ch b) and carotenoids in the cotyle-
dons of seven days-old seedlings was evaluated. In the plant tissue exposed 
to 3 minutes of UV-B radiation, it was observed that the concentration 
of Ch a, total and carotenoids decreased significantly with respect to the 
control (Table 1). While the concentration of chlorophyll b did not show 
a significant difference with the control. 

Antioxidant activity, UV-B absorbing compound,
and photoprotection capacity

The extract of seedlings irradiated with UV-B was more active as ABTS•+ 
scavenger than the extract seedlings not irradiated (control), reaching DC50 
values (concentration of extract necessary for scavenging the 50% of ABTS 
radicals) of 14±  0.1 and 17 ± 0.08 µg Eq GA/g SF respectively (Fig. 4). 

The content of UV-B absorbing compounds was evaluated in the ex-
tracts of seven days-old seedlings, exposed and not exposed to radiation. 
Interestingly, the concentration of such compounds increased by ~20% in 
cotyledons after 3 minutes of exposition UV-B, compared to the control, 
reaching values of 46,7 ± 1,19 A305nm g/FW (p < 0.05) (Fig. 4)

On the other hand, the photoprotection capacity was evaluated in ex-
tracts (1 mg Eq GA/ ml) of seven days-old seedlings with or without irra-
diation. Sun protection factor values obtained were higher when the plant 
was exposed to UV-B radiation. The values reaching were 15.1 and 11. 8 
for seedlings with and without irradiation respectively. 

DISCUSSION

The plants have developed a variety of responses to adapt to the hazardous 
UV-B radiation. The most common mechanism of protection against po-
tentially damaging radiation is the biosynthesis of secondary metabolites, 
such as phenols and flavonoids (Ghasemzadeh et al., 2016; Chen et al., 2019; 
Neugart et al., 2019). In sensible plants, without protective mechanisms, the 

Table 1. Content of photosynthetic pigments (µg/mL FW) and Chlorophyll a/b ratio in cotyledon of 
seven days-old seedling exposed to UV-B irradiation. Different letters indicate statistically significant 
differences (p < 0.05, Fisher’s post-test).

Tabla 1.  Contenido de pigmentos fotosintéticos (µg/mL FW) y relación clorofila a/b en cotiledones 
de plántulas de siete días expuestas a irradiación UV-B. Las  distintas letras indican diferencias es-
tadísticamente significativas (p < 0,05, postest de Fisher).

Treatmens CarotenoidsChlorophyll a/bChlorophyll bChlorophyll a

Control
UV-B 3 min

1561.8 ± 40.9a
1288.2 ± 47.7b

429.5 ± 25.5a
381.9 ± 18.9b

3.64 ± 0.24a
3.37 ± 0.29a

418.74 ± 9.36 a
361.14 ± 8.40 b
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damages frequently observed are ROS production, decreased photosynthetic 
pigments, reduced growth, etc. (Chen et al., 2020; García-Caparros et al., 
2021). The stressor agent will tend to produce different response phases in 
the plants, which will depend on genotype, the duration, and intensity of 
the stress (Schulze et al., 2019). Sun et al. (2010) also demonstrated that leaf 
age was a key factor in the protective response to UV-B radiation and, in 
relation to quinoa in particular, other authors suggest that this species has 
different response mechanisms depending on the dose of UV-B received 
(Hilal et al., 2004; Huarancca Reyes et al, 2018; Mariotti et al., 2021; Witta-
yathanarattana et al., 2022). In this context, the present work evaluated the 
influence of both factors: UV-B dose and seedling age on the production of 
secondary metabolites in quinoa. Reifenrath and Müller (2007) showed sim-
ilar results in two species of Brassicaceae, whose younger leaves responded 
faster against radiation. Thus, in our study, seven-day seedlings could show 
a higher response to ensure seedling establishment, through the synthesis 
of protective molecules, such as phenolic compounds (Kumar et al., 2020). 
Furthermore, in the cotyledons of seven-day-old seedlings, metabolic ac-
tivity is greater than in older cotyledons, since these could be initiating 
senescence (around 12-13 days), redistributing C to other growing organs, 
such as new leaves, to the detriment of the synthesis of primary and sec-
ondary metabolites (Ruffino et al., 2008).

Increases in the protective metabolites (soluble and insoluble pheno-
lics) determined in this work are consistent with those presented by other 

Fig. 4. Antioxidant activity (left axis, black bars) and content of UV-B absorbing com-
pounds (right axis and grey bars) present in cotyledons of seven-day-old quinoa seedlings 
exposed to UV-B irradiation. Different letters indicate statistically significant differences 
(p < 0.05, Fisher’s post-test).

Fig. 4. Actividad antioxidante (eje Izquierdo, barras negras) y contenido de compuestos 
absorbentes de UV-B (eje derecho, barras grises) presente en cotiledones de plántulas 
de quinoa de 7 días expuestos a radiación UV-B. Letras diferentes indican diferencias 
estadísticamente significativas (p<0.05, prueba de Fisher).
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authors, who have reported that low doses of UV-B radiation significantly 
increased the content of UV-B absorbing compounds and total phenolics 
in the peel of harvested lemons (Interdonato et al, 2011). In this sense, 
studies on the biosynthesis of phenolic compounds have shown that UV-B 
radiation induces the expression of specific genes of the phenylpropanoids 
pathway, increasing transcription levels and the activity of key enzymes 
(Reifenrath and Müller, 2007; Rodríguez-Calzada et al., 2019; Rizi et al., 
2021; Singh et al., 2023). 

Conversely, in this work, the content of phenolic compounds at the 
highest doses did not show a significant increase (Fig. 2). This fact could 
indicate that there was an increase in the use of phenolic compounds to 
eliminate reactive oxygen species (ROS) since the expression of scavenging 
enzymes, such as peroxidase (POD) and mitochondrial Mn-superoxide dis-
mutase (Mn-SOD) did not is induced by UV-B (Rodríguez-Calzada et al., 
2019). The increase in ROS generates lipid peroxidation of cell membranes 
which produces MDA as the most abundant aldehyde derivatives (Jiang 
and Zhang, 2002). In the present study, only 10-day-old seedlings irradiated 
with UV-B for 3 minutes showed high MDA content, which could be due 
to the lower IP content compared to 7-day-old seedlings (Fig. 1 and 2). 

In our study, the UV-B absorbing compounds and IP content were 
higher in cotyledons of plants irradiated with 3 min UV-B dose, which 
could produce a screening effect against the penetration of UV-B radiation 
(Hilal et al., 2004, Taiz et al., 2018). Moreover, SP, which includes UV-B 
absorbing compounds, could act as antioxidants protecting cells of ROS 
(Rozema et al., 2002; León-Chang et al., 2017). It is known that UV-B ra-
diation increases the flavonoid and other phenolics contents which present 
screening function (Taiz et al., 2018). In this sense, Pérez et al. (2015) ob-
served a similar response in leaves of five quinoa varieties that showed an 
increase in UV-B absorbing compounds. In agreement with this, our results 
show an increase in the content of UV-B absorbing compounds related, in 
turn, to a higher antioxidant activity (Fig. 4). Therefore, enriched quinoa 
extract could have a double function: as sunscreen and antioxidant.

On the other hand, the protective screen effect would also produce 
a decrease in PAR radiation that would lead to a new organization of the 
photosynthetic apparatus. Quinoa seedlings showed a higher stacking of 
thylakoids (shadow-like chloroplasts) in response to UV-B radiation (Hilal 
et al., 2004). Thus, the decrease in photosynthetic pigments observed in 
this work could be due to acclimation of the photosynthetic apparatus to 
less PAR radiation. Moreover, it is also important to consider leaf age in 
relation to its physiological stage, since Rizi et al. (2021) found a decrease 
in chlorophyll content of young leaves of Salvia verticillata under UV-B 
exposure. This suggests that young seedlings could be more sensitive to 
UV-B and therefore, cotyledons could preferentially direct their metabolism 
towards the synthesis of protective compounds.
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On the other hand, after irradiation, the temporal evolution of pro-
tective compounds was evaluated. Our result showed that the highest con-
tent of SP and IP were obtained 24 h after irradiation in seven days-old 
seedlings irradiated with UV-B for 3 minutes (Fig. 3), according to other 
authors that showed increases in phenolic compounds after 24 h of response 
time (Wittayathanarattana et al., 2022). On the other hand, when the time 
after irradiation was 48 h, the phenolics content did not increase (Fig. 3). 
The plant stress response is a dynamic process with several stages. Early 
stress response during an alarm phase could be characterized by an acti-
vation of various inducible stress signaling pathways and enhanced oxida-
tive stress (Rehem et al., 2012). However, during recovery time, protective 
stress compounds are degraded, and a new cellular homeostasis is initiated. 
Therefore, it could be inferred that quinoa plants exposed to short-term 
stress showed a brief and rapid acclimation response, restoring their normal 
physiological metabolism after 48 h. 

 The sun protection factor (SPF) of seven-day-old seedling extracts 
was evaluated 24 h after UV-B irradiation. The SPF expresses the efficiency 
of a compound to absorb in the entire UV range, a higher SPF indicates 
a stronger photoprotective activity (Radice et al., 2016). The extracts ob-
tained from irradiated seedlings showed a high SPF (15.3) according to 
the classification of SPF by Protection according to European Commission 
Recommendation [ECR, 2006). An advantage of the use of phytochemicals 
for protection against the sun is based on their “pluripotent character”, 
as termed by Dinkova-Kostova (2008), which is defined as their ability to 
counteract the multiple damaging effects of UV radiation. 

It should be noted that the SPF value found in non-irradiated plant 
extracts (SPF value:11) is higher than that reported for other species (Pri-
yanka et al., 2018; Álvarez-Gómez et al., 2019) and is considered an average 
SPF value (ECR, 2006). This could be due to quinoa being adapted to grow 
in high mountain environments under high UV radiation levels, drought, 
and salinity (Ain et al., 2023).

In quinoa plants, more than 130 phytochemical compounds have been 
identified (Javaid et al., 2022; Melini and Melini, 2022). Tang et al. (2015) 
determined in quinoa seeds of three typical colors, the presence of phenolic 
compounds in free and conjugated forms such as quercetin, kaempferol, 
ferulic acid, p-coumaric acid, vanillic acid, p- hydroxybenzoic acid, etc. 
Likewise, the presence of lignin in response to UV-B was shown by Hilal 
et al. (2004). Al-Qabba et al. (2020) determined that quinoa sprouts of 6 
days-old present a great antioxidant activity. In this sense, the present work 
represents a first step in the optimization for obtaining extracts rich in 
phenolic compounds with biological activity for the formulation of natural 
sunscreens.

On the other hand, our results showed a fresh biomass yield of 0,5 
g/cm2 (cotyledons+hypocotile), which makes the microgreen system an 
interesting option since it can be carried out in a small space, quickly and 
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with few resources. This could also be valuable for the development of 
micro-economies, revaluing quinoa both as a functional food and for its 
cosmetic/pharmacological use.

CONCLUSION

Quinoa plants present mechanisms of adaptation to UV-B that produce 
a rapid increase in the synthesis of phenolic compounds, in response to 
supplementary doses of UV-B. In this search, it was decided to use a mi-
crogreen system to obtain seven days-old quinoa seedlings as a resource 
of extracts with a high content of phenolic compounds. The enrichment 
of the extracts was achieved by a short dose of UVB radiation (4.12 Wm-2 
for three minutes). This selection was based on the biotechnological point 
of view of maintaining an adequate cost/benefit ratio. The evaluated plant 
extracts showed good sun protection value and antioxidant activity. The 
methods used to enhance the bioactivities in the quinoa extract were sim-
ple, making it an environmentally and economically advantageous process. 
These results can serve as a starting point for optimization studies through 
the response surface methodology (RSM). The RSM is a collection of sta-
tistical and mathematical techniques useful for developing, improving, and 
optimizing processes (Myer et al., 2009). It also has important application 
in the design, development, and formulation of new products. In this sense, 
the application of RSM to our data will allow us to adjust the variables stud-
ied to obtain the best possible responses. One of the most positive aspects 
of using RSM is that it can predict response patterns and thus reduce the 
number of experiments needed to obtain reliable results, which saves time 
and resources.
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